MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3 Structured version   Visualization version   GIF version

Theorem deg1mul3 24095
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1mul3.d 𝐷 = ( deg1𝑅)
deg1mul3.p 𝑃 = (Poly1𝑅)
deg1mul3.e 𝐸 = (RLReg‘𝑅)
deg1mul3.b 𝐵 = (Base‘𝑃)
deg1mul3.t · = (.r𝑃)
deg1mul3.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))

Proof of Theorem deg1mul3
StepHypRef Expression
1 deg1mul3.e . . . . . . . 8 𝐸 = (RLReg‘𝑅)
2 eqid 2771 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
31, 2rrgss 19507 . . . . . . 7 𝐸 ⊆ (Base‘𝑅)
43sseli 3748 . . . . . 6 (𝐹𝐸𝐹 ∈ (Base‘𝑅))
5 deg1mul3.p . . . . . . 7 𝑃 = (Poly1𝑅)
6 deg1mul3.b . . . . . . 7 𝐵 = (Base‘𝑃)
7 deg1mul3.a . . . . . . 7 𝐴 = (algSc‘𝑃)
8 deg1mul3.t . . . . . . 7 · = (.r𝑃)
9 eqid 2771 . . . . . . 7 (.r𝑅) = (.r𝑅)
105, 6, 2, 7, 8, 9coe1sclmul 19867 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘𝑓 (.r𝑅)(coe1𝐺)))
114, 10syl3an2 1167 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘𝑓 (.r𝑅)(coe1𝐺)))
1211oveq1d 6808 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = (((ℕ0 × {𝐹}) ∘𝑓 (.r𝑅)(coe1𝐺)) supp (0g𝑅)))
13 eqid 2771 . . . . 5 (0g𝑅) = (0g𝑅)
14 nn0ex 11500 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ℕ0 ∈ V)
16 simp1 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑅 ∈ Ring)
17 simp2 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹𝐸)
18 eqid 2771 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
1918, 6, 5, 2coe1f 19796 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
20193ad2ant3 1129 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
211, 2, 9, 13, 15, 16, 17, 20rrgsupp 19506 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (((ℕ0 × {𝐹}) ∘𝑓 (.r𝑅)(coe1𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2212, 21eqtrd 2805 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2322supeq1d 8508 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
245ply1ring 19833 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
25243ad2ant1 1127 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑃 ∈ Ring)
265, 7, 2, 6ply1sclf 19870 . . . . . 6 (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵)
27263ad2ant1 1127 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐴:(Base‘𝑅)⟶𝐵)
2843ad2ant2 1128 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹 ∈ (Base‘𝑅))
2927, 28ffvelrnd 6503 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
30 simp3 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐺𝐵)
316, 8ringcl 18769 . . . 4 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
3225, 29, 30, 31syl3anc 1476 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
33 deg1mul3.d . . . 4 𝐷 = ( deg1𝑅)
34 eqid 2771 . . . 4 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
3533, 5, 6, 13, 34deg1val 24076 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3632, 35syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3733, 5, 6, 13, 18deg1val 24076 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
38373ad2ant3 1129 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
3923, 36, 383eqtr4d 2815 1 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  {csn 4316   × cxp 5247  wf 6027  cfv 6031  (class class class)co 6793  𝑓 cof 7042   supp csupp 7446  supcsup 8502  *cxr 10275   < clt 10276  0cn0 11494  Basecbs 16064  .rcmulr 16150  0gc0g 16308  Ringcrg 18755  RLRegcrlreg 19494  algSccascl 19526  Poly1cpl1 19762  coe1cco1 19763   deg1 cdg1 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-lmod 19075  df-lss 19143  df-rlreg 19498  df-ascl 19529  df-psr 19571  df-mvr 19572  df-mpl 19573  df-opsr 19575  df-psr1 19765  df-vr1 19766  df-ply1 19767  df-coe1 19768  df-cnfld 19962  df-mdeg 24035  df-deg1 24036
This theorem is referenced by:  uc1pmon1p  24131  ig1peu  24151
  Copyright terms: Public domain W3C validator