![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1mul2 | Structured version Visualization version GIF version |
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1mul2.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1mul2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1mul2.e | ⊢ 𝐸 = (RLReg‘𝑅) |
deg1mul2.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1mul2.t | ⊢ · = (.r‘𝑃) |
deg1mul2.z | ⊢ 0 = (0g‘𝑃) |
deg1mul2.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1mul2.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1mul2.fz | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
deg1mul2.fc | ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) |
deg1mul2.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1mul2.gz | ⊢ (𝜑 → 𝐺 ≠ 0 ) |
Ref | Expression |
---|---|
deg1mul2 | ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul2.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | deg1mul2.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | deg1mul2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | deg1mul2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
5 | deg1mul2.t | . . 3 ⊢ · = (.r‘𝑃) | |
6 | deg1mul2.fb | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | deg1mul2.gb | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | deg1mul2.fz | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
9 | deg1mul2.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
10 | 2, 1, 9, 4 | deg1nn0cl 24018 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
11 | 3, 6, 8, 10 | syl3anc 1463 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
12 | deg1mul2.gz | . . . 4 ⊢ (𝜑 → 𝐺 ≠ 0 ) | |
13 | 2, 1, 9, 4 | deg1nn0cl 24018 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → (𝐷‘𝐺) ∈ ℕ0) |
14 | 3, 7, 12, 13 | syl3anc 1463 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℕ0) |
15 | 11 | nn0red 11515 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ) |
16 | 15 | leidd 10757 | . . 3 ⊢ (𝜑 → (𝐷‘𝐹) ≤ (𝐷‘𝐹)) |
17 | 14 | nn0red 11515 | . . . 4 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ) |
18 | 17 | leidd 10757 | . . 3 ⊢ (𝜑 → (𝐷‘𝐺) ≤ (𝐷‘𝐺)) |
19 | 1, 2, 3, 4, 5, 6, 7, 11, 14, 16, 18 | deg1mulle2 24039 | . 2 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺))) |
20 | 1 | ply1ring 19791 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
21 | 3, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
22 | 4, 5 | ringcl 18732 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
23 | 21, 6, 7, 22 | syl3anc 1463 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
24 | 11, 14 | nn0addcld 11518 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0) |
25 | eqid 2748 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 1, 5, 25, 4, 2, 9, 3, 6, 8, 7, 12 | coe1mul4 24030 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) = (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺)))) |
27 | eqid 2748 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
28 | eqid 2748 | . . . . . . 7 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
29 | 2, 1, 9, 4, 27, 28 | deg1ldg 24022 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
30 | 3, 7, 12, 29 | syl3anc 1463 | . . . . 5 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅)) |
31 | deg1mul2.fc | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸) | |
32 | eqid 2748 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
33 | 28, 4, 1, 32 | coe1f 19754 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
34 | 7, 33 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
35 | 34, 14 | ffvelrnd 6511 | . . . . . . 7 ⊢ (𝜑 → ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) |
36 | deg1mul2.e | . . . . . . . 8 ⊢ 𝐸 = (RLReg‘𝑅) | |
37 | 36, 32, 25, 27 | rrgeq0i 19462 | . . . . . . 7 ⊢ ((((coe1‘𝐹)‘(𝐷‘𝐹)) ∈ 𝐸 ∧ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Base‘𝑅)) → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
38 | 31, 35, 37 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → ((((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) = (0g‘𝑅) → ((coe1‘𝐺)‘(𝐷‘𝐺)) = (0g‘𝑅))) |
39 | 38 | necon3d 2941 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘(𝐷‘𝐺)) ≠ (0g‘𝑅) → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅))) |
40 | 30, 39 | mpd 15 | . . . 4 ⊢ (𝜑 → (((coe1‘𝐹)‘(𝐷‘𝐹))(.r‘𝑅)((coe1‘𝐺)‘(𝐷‘𝐺))) ≠ (0g‘𝑅)) |
41 | 26, 40 | eqnetrd 2987 | . . 3 ⊢ (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) |
42 | eqid 2748 | . . . 4 ⊢ (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺)) | |
43 | 2, 1, 4, 27, 42 | deg1ge 24028 | . . 3 ⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷‘𝐹) + (𝐷‘𝐺))) ≠ (0g‘𝑅)) → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
44 | 23, 24, 41, 43 | syl3anc 1463 | . 2 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))) |
45 | 2, 1, 4 | deg1xrcl 24012 | . . . 4 ⊢ ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
46 | 23, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*) |
47 | 24 | nn0red 11515 | . . . 4 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ) |
48 | 47 | rexrd 10252 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) |
49 | xrletri3 12149 | . . 3 ⊢ (((𝐷‘(𝐹 · 𝐺)) ∈ ℝ* ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺)) ↔ ((𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))))) | |
50 | 46, 48, 49 | syl2anc 696 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺)) ↔ ((𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷‘𝐹) + (𝐷‘𝐺)) ∧ ((𝐷‘𝐹) + (𝐷‘𝐺)) ≤ (𝐷‘(𝐹 · 𝐺))))) |
51 | 19, 44, 50 | mpbir2and 995 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷‘𝐹) + (𝐷‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 ⟶wf 6033 ‘cfv 6037 (class class class)co 6801 + caddc 10102 ℝ*cxr 10236 ≤ cle 10238 ℕ0cn0 11455 Basecbs 16030 .rcmulr 16115 0gc0g 16273 Ringcrg 18718 RLRegcrlreg 19452 Poly1cpl1 19720 coe1cco1 19721 deg1 cdg1 23984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-addf 10178 ax-mulf 10179 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-ofr 7051 df-om 7219 df-1st 7321 df-2nd 7322 df-supp 7452 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7899 df-map 8013 df-pm 8014 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8429 df-sup 8501 df-oi 8568 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-fz 12491 df-fzo 12631 df-seq 12967 df-hash 13283 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-starv 16129 df-sca 16130 df-vsca 16131 df-tset 16133 df-ple 16134 df-ds 16137 df-unif 16138 df-0g 16275 df-gsum 16276 df-mre 16419 df-mrc 16420 df-acs 16422 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-mhm 17507 df-submnd 17508 df-grp 17597 df-minusg 17598 df-mulg 17713 df-subg 17763 df-ghm 17830 df-cntz 17921 df-cmn 18366 df-abl 18367 df-mgp 18661 df-ur 18673 df-ring 18720 df-cring 18721 df-subrg 18951 df-rlreg 19456 df-psr 19529 df-mpl 19531 df-opsr 19533 df-psr1 19723 df-ply1 19725 df-coe1 19726 df-cnfld 19920 df-mdeg 23985 df-deg1 23986 |
This theorem is referenced by: ply1domn 24053 ply1divmo 24065 fta1glem1 24095 mon1psubm 38255 deg1mhm 38256 |
Copyright terms: Public domain | W3C validator |