MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1lt0 Structured version   Visualization version   GIF version

Theorem deg1lt0 23896
Description: A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
deg1lt0 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) < 0 ↔ 𝐹 = 0 ))

Proof of Theorem deg1lt0
StepHypRef Expression
1 deg1z.d . . . . . 6 𝐷 = ( deg1𝑅)
2 deg1z.p . . . . . 6 𝑃 = (Poly1𝑅)
3 deg1z.z . . . . . 6 0 = (0g𝑃)
4 deg1nn0cl.b . . . . . 6 𝐵 = (Base‘𝑃)
51, 2, 3, 4deg1nn0cl 23893 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
6 nn0nlt0 11357 . . . . 5 ((𝐷𝐹) ∈ ℕ0 → ¬ (𝐷𝐹) < 0)
75, 6syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ¬ (𝐷𝐹) < 0)
873expia 1286 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 → ¬ (𝐷𝐹) < 0))
98necon4ad 2842 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) < 0 → 𝐹 = 0 ))
101, 2, 3deg1z 23892 . . . . 5 (𝑅 ∈ Ring → (𝐷0 ) = -∞)
11 mnflt0 11997 . . . . 5 -∞ < 0
1210, 11syl6eqbr 4724 . . . 4 (𝑅 ∈ Ring → (𝐷0 ) < 0)
1312adantr 480 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐷0 ) < 0)
14 fveq2 6229 . . . 4 (𝐹 = 0 → (𝐷𝐹) = (𝐷0 ))
1514breq1d 4695 . . 3 (𝐹 = 0 → ((𝐷𝐹) < 0 ↔ (𝐷0 ) < 0))
1613, 15syl5ibrcom 237 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹 = 0 → (𝐷𝐹) < 0))
179, 16impbid 202 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) < 0 ↔ 𝐹 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  0cc0 9974  -∞cmnf 10110   < clt 10112  0cn0 11330  Basecbs 15904  0gc0g 16147  Ringcrg 18593  Poly1cpl1 19595   deg1 cdg1 23859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-psr 19404  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-ply1 19600  df-cnfld 19795  df-mdeg 23860  df-deg1 23861
This theorem is referenced by:  hbtlem5  38015
  Copyright terms: Public domain W3C validator