![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference's hypothesis eliminated with elimhyp 4291. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4297 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4237 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2767 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 248 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ifcif 4231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-if 4232 |
This theorem is referenced by: dedth2h 4285 dedth3h 4286 orduninsuc 7210 oeoe 7851 limensuc 8305 axcc4dom 9476 inar1 9810 supsr 10146 renegcl 10557 peano5uzti 11680 uzenom 12978 seqfn 13028 seq1 13029 seqp1 13031 hashxp 13434 smadiadetr 20704 imsmet 27877 smcn 27884 nmlno0i 27980 nmblolbi 27986 blocn 27993 dipdir 28028 dipass 28031 siilem2 28038 htth 28106 normlem6 28303 normlem7tALT 28307 normsq 28322 hhssablo 28451 hhssnvt 28453 hhsssh 28457 shintcl 28520 chintcl 28522 pjhth 28583 ococ 28596 chm0 28681 chne0 28684 chocin 28685 chj0 28687 chjo 28705 h1de2ci 28746 spansn 28749 elspansn 28756 pjch1 28860 pjinormi 28877 pjige0 28881 hoaddid1 28981 hodid 28982 nmlnop0 29188 lnopunilem2 29201 elunop2 29203 lnophm 29209 nmbdoplb 29215 nmcopex 29219 nmcoplb 29220 lnopcon 29225 lnfn0 29237 lnfnmul 29238 nmbdfnlb 29240 nmcfnex 29243 nmcfnlb 29244 lnfncon 29246 riesz4 29254 riesz1 29255 cnlnadjeu 29268 pjhmop 29340 hmopidmch 29343 hmopidmpj 29344 pjss2coi 29354 pjssmi 29355 pjssge0i 29356 pjdifnormi 29357 pjidmco 29371 mdslmd1lem3 29517 mdslmd1lem4 29518 csmdsymi 29524 hatomic 29550 atord 29578 atcvat2 29579 chirred 29585 bnj941 31172 bnj944 31337 sqdivzi 31939 onsucconn 32765 onsucsuccmp 32771 limsucncmp 32773 dedths 34770 dedths2 34773 bnd2d 42957 |
Copyright terms: Public domain | W3C validator |