MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedlemb Structured version   Visualization version   GIF version

Theorem dedlemb 1015
Description: Lemma for weak deduction theorem. See also ifpfal 1044. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlemb 𝜑 → (𝜒 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))

Proof of Theorem dedlemb
StepHypRef Expression
1 olc 398 . . 3 ((𝜒 ∧ ¬ 𝜑) → ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))
21expcom 450 . 2 𝜑 → (𝜒 → ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
3 pm2.21 120 . . . 4 𝜑 → (𝜑𝜒))
43adantld 482 . . 3 𝜑 → ((𝜓𝜑) → 𝜒))
5 simpl 472 . . . 4 ((𝜒 ∧ ¬ 𝜑) → 𝜒)
65a1i 11 . . 3 𝜑 → ((𝜒 ∧ ¬ 𝜑) → 𝜒))
74, 6jaod 394 . 2 𝜑 → (((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)) → 𝜒))
82, 7impbid 202 1 𝜑 → (𝜒 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385
This theorem is referenced by:  cases2  1016  pm4.42  1024  iffalse  4128
  Copyright terms: Public domain W3C validator