![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decsplit | Structured version Visualization version GIF version |
Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decsplit0.1 | ⊢ 𝐴 ∈ ℕ0 |
decsplit.2 | ⊢ 𝐵 ∈ ℕ0 |
decsplit.3 | ⊢ 𝐷 ∈ ℕ0 |
decsplit.4 | ⊢ 𝑀 ∈ ℕ0 |
decsplit.5 | ⊢ (𝑀 + 1) = 𝑁 |
decsplit.6 | ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
decsplit | ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 11723 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
2 | decsplit0.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
3 | decsplit.4 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
4 | 1, 3 | nn0expcli 13093 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℕ0 |
5 | 2, 4 | nn0mulcli 11538 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℕ0 |
6 | 1, 5 | nn0mulcli 11538 | . . . . 5 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℕ0 |
7 | 6 | nn0cni 11511 | . . . 4 ⊢ (;10 · (𝐴 · (;10↑𝑀))) ∈ ℂ |
8 | decsplit.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
9 | 1, 8 | nn0mulcli 11538 | . . . . 5 ⊢ (;10 · 𝐵) ∈ ℕ0 |
10 | 9 | nn0cni 11511 | . . . 4 ⊢ (;10 · 𝐵) ∈ ℂ |
11 | decsplit.3 | . . . . 5 ⊢ 𝐷 ∈ ℕ0 | |
12 | 11 | nn0cni 11511 | . . . 4 ⊢ 𝐷 ∈ ℂ |
13 | 7, 10, 12 | addassi 10254 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
14 | 1 | nn0cni 11511 | . . . . . 6 ⊢ ;10 ∈ ℂ |
15 | 5 | nn0cni 11511 | . . . . . 6 ⊢ (𝐴 · (;10↑𝑀)) ∈ ℂ |
16 | 8 | nn0cni 11511 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
17 | 14, 15, 16 | adddii 10256 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) |
18 | decsplit.6 | . . . . . 6 ⊢ ((𝐴 · (;10↑𝑀)) + 𝐵) = 𝐶 | |
19 | 18 | oveq2i 6807 | . . . . 5 ⊢ (;10 · ((𝐴 · (;10↑𝑀)) + 𝐵)) = (;10 · 𝐶) |
20 | 17, 19 | eqtr3i 2795 | . . . 4 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) = (;10 · 𝐶) |
21 | 20 | oveq1i 6806 | . . 3 ⊢ (((;10 · (𝐴 · (;10↑𝑀))) + (;10 · 𝐵)) + 𝐷) = ((;10 · 𝐶) + 𝐷) |
22 | 13, 21 | eqtr3i 2795 | . 2 ⊢ ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) = ((;10 · 𝐶) + 𝐷) |
23 | decsplit.5 | . . . . . 6 ⊢ (𝑀 + 1) = 𝑁 | |
24 | 4 | nn0cni 11511 | . . . . . . 7 ⊢ (;10↑𝑀) ∈ ℂ |
25 | 24, 14 | mulcomi 10252 | . . . . . 6 ⊢ ((;10↑𝑀) · ;10) = (;10 · (;10↑𝑀)) |
26 | 1, 3, 23, 25 | numexpp1 15989 | . . . . 5 ⊢ (;10↑𝑁) = (;10 · (;10↑𝑀)) |
27 | 26 | oveq2i 6807 | . . . 4 ⊢ (𝐴 · (;10↑𝑁)) = (𝐴 · (;10 · (;10↑𝑀))) |
28 | 2 | nn0cni 11511 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
29 | 28, 14, 24 | mul12i 10437 | . . . 4 ⊢ (𝐴 · (;10 · (;10↑𝑀))) = (;10 · (𝐴 · (;10↑𝑀))) |
30 | 27, 29 | eqtri 2793 | . . 3 ⊢ (𝐴 · (;10↑𝑁)) = (;10 · (𝐴 · (;10↑𝑀))) |
31 | dfdec10 11704 | . . 3 ⊢ ;𝐵𝐷 = ((;10 · 𝐵) + 𝐷) | |
32 | 30, 31 | oveq12i 6808 | . 2 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ((;10 · (𝐴 · (;10↑𝑀))) + ((;10 · 𝐵) + 𝐷)) |
33 | dfdec10 11704 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
34 | 22, 32, 33 | 3eqtr4i 2803 | 1 ⊢ ((𝐴 · (;10↑𝑁)) + ;𝐵𝐷) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6796 0cc0 10142 1c1 10143 + caddc 10145 · cmul 10147 ℕ0cn0 11499 ;cdc 11700 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-seq 13009 df-exp 13068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |