MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decrmanc Structured version   Visualization version   GIF version

Theorem decrmanc 11782
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmanc.e (𝐴 · 𝑃) = 𝐸
decrmanc.f ((𝐵 · 𝑃) + 𝑁) = 𝐹
Assertion
Ref Expression
decrmanc ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 11514 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 11729 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
81, 7nn0mulcli 11538 . . . . 5 (𝐴 · 𝑃) ∈ ℕ0
98nn0cni 11511 . . . 4 (𝐴 · 𝑃) ∈ ℂ
109addid1i 10429 . . 3 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
11 decrmanc.e . . 3 (𝐴 · 𝑃) = 𝐸
1210, 11eqtri 2793 . 2 ((𝐴 · 𝑃) + 0) = 𝐸
13 decrmanc.f . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐹
141, 2, 3, 4, 5, 6, 7, 12, 13decma 11770 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  (class class class)co 6796  0cc0 10142   + caddc 10145   · cmul 10147  0cn0 11499  cdc 11700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-ltxr 10285  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-dec 11701
This theorem is referenced by:  37prm  16035  2503lem1  16051  4001lem1  16055  4001lem2  16056  4001lem3  16057  log2ub  24897
  Copyright terms: Public domain W3C validator