![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decaddi | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddi.5 | ⊢ (𝐵 + 𝑁) = 𝐶 |
Ref | Expression |
---|---|
decaddi | ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 11520 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 11735 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 11517 | . . 3 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addid1i 10436 | . 2 ⊢ (𝐴 + 0) = 𝐴 |
9 | decaddi.5 | . 2 ⊢ (𝐵 + 𝑁) = 𝐶 | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | decadd 11783 | 1 ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 (class class class)co 6815 0cc0 10149 + caddc 10152 ℕ0cn0 11505 ;cdc 11706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-ltxr 10292 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-dec 11707 |
This theorem is referenced by: 4t4e16 11846 6t3e18 11855 7t4e28 11863 7t7e49 11866 2exp16 16020 17prm 16047 23prm 16049 prmlem2 16050 37prm 16051 83prm 16053 139prm 16054 163prm 16055 317prm 16056 631prm 16057 1259lem1 16061 1259lem2 16062 1259lem3 16063 1259lem4 16064 1259lem5 16065 1259prm 16066 2503lem1 16067 2503lem2 16068 2503lem3 16069 4001lem1 16071 4001lem2 16072 4001lem4 16074 4001prm 16075 log2ublem3 24896 log2ub 24897 birthday 24902 ex-exp 27640 ex-fac 27641 hgt750lem2 31061 fmtno5lem1 41994 fmtno5lem2 41995 fmtno5lem4 41997 257prm 42002 fmtno4prmfac 42013 fmtno4nprmfac193 42015 fmtno5faclem1 42020 fmtno5faclem2 42021 fmtno5faclem3 42022 139prmALT 42040 127prm 42044 2exp11 42046 |
Copyright terms: Public domain | W3C validator |