MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddc Structured version   Visualization version   GIF version

Theorem decaddc 11685
Description: Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decaddc.e ((𝐴 + 𝐶) + 1) = 𝐸
decaddc.f 𝐹 ∈ ℕ0
decaddc.2 (𝐵 + 𝐷) = 1𝐹
Assertion
Ref Expression
decaddc (𝑀 + 𝑁) = 𝐸𝐹

Proof of Theorem decaddc
StepHypRef Expression
1 10nn0 11629 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 11610 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2746 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 11610 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2746 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decaddc.f . . 3 𝐹 ∈ ℕ0
13 decaddc.e . . 3 ((𝐴 + 𝐶) + 1) = 𝐸
14 decaddc.2 . . . 4 (𝐵 + 𝐷) = 1𝐹
15 dfdec10 11610 . . . 4 1𝐹 = ((10 · 1) + 𝐹)
1614, 15eqtri 2746 . . 3 (𝐵 + 𝐷) = ((10 · 1) + 𝐹)
171, 2, 3, 4, 5, 8, 11, 12, 13, 16numaddc 11674 . 2 (𝑀 + 𝑁) = ((10 · 𝐸) + 𝐹)
18 dfdec10 11610 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
1917, 18eqtr4i 2749 1 (𝑀 + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1596  wcel 2103  (class class class)co 6765  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  0cn0 11405  cdc 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-ltxr 10192  df-sub 10381  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-dec 11607
This theorem is referenced by:  decaddc2OLD  11687  decaddc2  11688  decaddci  11693  2exp16  15920  prmlem2  15950  37prm  15951  1259lem1  15961  1259lem4  15964  2503lem2  15968  4001lem1  15971  threehalves  29853  1mhdrd  29854  hgt750lem2  30960  fmtno5lem4  41895  fmtno4nprmfac193  41913  fmtno5fac  41921
  Copyright terms: Public domain W3C validator