![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec5dvds | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
dec5dvds.3 | ⊢ 𝐵 < 5 |
Ref | Expression |
---|---|
dec5dvds | ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 11400 | . 2 ⊢ 5 ∈ ℕ | |
2 | 2nn0 11521 | . . 3 ⊢ 2 ∈ ℕ0 | |
3 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | 2, 3 | nn0mulcli 11543 | . 2 ⊢ (2 · 𝐴) ∈ ℕ0 |
5 | dec5dvds.2 | . 2 ⊢ 𝐵 ∈ ℕ | |
6 | 5cn 11312 | . . . . . 6 ⊢ 5 ∈ ℂ | |
7 | 2cn 11303 | . . . . . 6 ⊢ 2 ∈ ℂ | |
8 | 3 | nn0cni 11516 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
9 | 6, 7, 8 | mulassi 10261 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (5 · (2 · 𝐴)) |
10 | 5t2e10 11846 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
11 | 10 | oveq1i 6824 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
12 | 9, 11 | eqtr3i 2784 | . . . 4 ⊢ (5 · (2 · 𝐴)) = (;10 · 𝐴) |
13 | 12 | oveq1i 6824 | . . 3 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ((;10 · 𝐴) + 𝐵) |
14 | dfdec10 11709 | . . 3 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
15 | 13, 14 | eqtr4i 2785 | . 2 ⊢ ((5 · (2 · 𝐴)) + 𝐵) = ;𝐴𝐵 |
16 | dec5dvds.3 | . 2 ⊢ 𝐵 < 5 | |
17 | 1, 4, 5, 15, 16 | ndvdsi 15358 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 0cc0 10148 1c1 10149 + caddc 10151 · cmul 10153 < clt 10286 ℕcn 11232 2c2 11282 5c5 11285 ℕ0cn0 11504 ;cdc 11705 ∥ cdvds 15202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-rp 12046 df-fz 12540 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-dvds 15203 |
This theorem is referenced by: dec5dvds2 15991 43prm 16051 83prm 16052 163prm 16054 631prm 16056 31prm 42040 |
Copyright terms: Public domain | W3C validator |