MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2dvds Structured version   Visualization version   GIF version

Theorem dec2dvds 15814
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec2dvds.1 𝐴 ∈ ℕ0
dec2dvds.2 𝐵 ∈ ℕ0
dec2dvds.3 (𝐵 · 2) = 𝐶
dec2dvds.4 𝐷 = (𝐶 + 1)
Assertion
Ref Expression
dec2dvds ¬ 2 ∥ 𝐴𝐷

Proof of Theorem dec2dvds
StepHypRef Expression
1 5nn0 11350 . . . . . . . . 9 5 ∈ ℕ0
21nn0zi 11440 . . . . . . . 8 5 ∈ ℤ
3 2z 11447 . . . . . . . 8 2 ∈ ℤ
4 dvdsmul2 15051 . . . . . . . 8 ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2))
52, 3, 4mp2an 708 . . . . . . 7 2 ∥ (5 · 2)
6 5t2e10 11672 . . . . . . 7 (5 · 2) = 10
75, 6breqtri 4710 . . . . . 6 2 ∥ 10
8 10nn0 11554 . . . . . . . 8 10 ∈ ℕ0
98nn0zi 11440 . . . . . . 7 10 ∈ ℤ
10 dec2dvds.1 . . . . . . . 8 𝐴 ∈ ℕ0
1110nn0zi 11440 . . . . . . 7 𝐴 ∈ ℤ
12 dvdsmultr1 15066 . . . . . . 7 ((2 ∈ ℤ ∧ 10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ 10 → 2 ∥ (10 · 𝐴)))
133, 9, 11, 12mp3an 1464 . . . . . 6 (2 ∥ 10 → 2 ∥ (10 · 𝐴))
147, 13ax-mp 5 . . . . 5 2 ∥ (10 · 𝐴)
15 dec2dvds.2 . . . . . . . 8 𝐵 ∈ ℕ0
1615nn0zi 11440 . . . . . . 7 𝐵 ∈ ℤ
17 dvdsmul2 15051 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2))
1816, 3, 17mp2an 708 . . . . . 6 2 ∥ (𝐵 · 2)
19 dec2dvds.3 . . . . . 6 (𝐵 · 2) = 𝐶
2018, 19breqtri 4710 . . . . 5 2 ∥ 𝐶
218, 10nn0mulcli 11369 . . . . . . 7 (10 · 𝐴) ∈ ℕ0
2221nn0zi 11440 . . . . . 6 (10 · 𝐴) ∈ ℤ
23 2nn0 11347 . . . . . . . . 9 2 ∈ ℕ0
2415, 23nn0mulcli 11369 . . . . . . . 8 (𝐵 · 2) ∈ ℕ0
2519, 24eqeltrri 2727 . . . . . . 7 𝐶 ∈ ℕ0
2625nn0zi 11440 . . . . . 6 𝐶 ∈ ℤ
27 dvds2add 15062 . . . . . 6 ((2 ∈ ℤ ∧ (10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶)))
283, 22, 26, 27mp3an 1464 . . . . 5 ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶))
2914, 20, 28mp2an 708 . . . 4 2 ∥ ((10 · 𝐴) + 𝐶)
30 dfdec10 11535 . . . 4 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
3129, 30breqtrri 4712 . . 3 2 ∥ 𝐴𝐶
3210, 25deccl 11550 . . . . 5 𝐴𝐶 ∈ ℕ0
3332nn0zi 11440 . . . 4 𝐴𝐶 ∈ ℤ
34 2nn 11223 . . . 4 2 ∈ ℕ
35 1lt2 11232 . . . 4 1 < 2
36 ndvdsp1 15182 . . . 4 ((𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1)))
3733, 34, 35, 36mp3an 1464 . . 3 (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1))
3831, 37ax-mp 5 . 2 ¬ 2 ∥ (𝐴𝐶 + 1)
39 dec2dvds.4 . . . . 5 𝐷 = (𝐶 + 1)
4039eqcomi 2660 . . . 4 (𝐶 + 1) = 𝐷
41 eqid 2651 . . . 4 𝐴𝐶 = 𝐴𝐶
4210, 25, 40, 41decsuc 11573 . . 3 (𝐴𝐶 + 1) = 𝐴𝐷
4342breq2i 4693 . 2 (2 ∥ (𝐴𝐶 + 1) ↔ 2 ∥ 𝐴𝐷)
4438, 43mtbi 311 1 ¬ 2 ∥ 𝐴𝐷
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cn 11058  2c2 11108  5c5 11111  0cn0 11330  cz 11415  cdc 11531  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028
This theorem is referenced by:  11prm  15869  13prm  15870  17prm  15871  19prm  15872  23prm  15873  37prm  15875  43prm  15876  83prm  15877  139prm  15878  163prm  15879  317prm  15880  631prm  15881  257prm  41798  139prmALT  41836  31prm  41837  127prm  41840
  Copyright terms: Public domain W3C validator