![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec2dvds | Structured version Visualization version GIF version |
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
Ref | Expression |
---|---|
dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 11350 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
2 | 1 | nn0zi 11440 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
3 | 2z 11447 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
4 | dvdsmul2 15051 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
5 | 2, 3, 4 | mp2an 708 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
6 | 5t2e10 11672 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
7 | 5, 6 | breqtri 4710 | . . . . . 6 ⊢ 2 ∥ ;10 |
8 | 10nn0 11554 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
9 | 8 | nn0zi 11440 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
11 | 10 | nn0zi 11440 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
12 | dvdsmultr1 15066 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
13 | 3, 9, 11, 12 | mp3an 1464 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
16 | 15 | nn0zi 11440 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
17 | dvdsmul2 15051 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
18 | 16, 3, 17 | mp2an 708 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
20 | 18, 19 | breqtri 4710 | . . . . 5 ⊢ 2 ∥ 𝐶 |
21 | 8, 10 | nn0mulcli 11369 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
22 | 21 | nn0zi 11440 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
23 | 2nn0 11347 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
24 | 15, 23 | nn0mulcli 11369 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
25 | 19, 24 | eqeltrri 2727 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
26 | 25 | nn0zi 11440 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
27 | dvds2add 15062 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
28 | 3, 22, 26, 27 | mp3an 1464 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
29 | 14, 20, 28 | mp2an 708 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
30 | dfdec10 11535 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
31 | 29, 30 | breqtrri 4712 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
32 | 10, 25 | deccl 11550 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
33 | 32 | nn0zi 11440 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
34 | 2nn 11223 | . . . 4 ⊢ 2 ∈ ℕ | |
35 | 1lt2 11232 | . . . 4 ⊢ 1 < 2 | |
36 | ndvdsp1 15182 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
37 | 33, 34, 35, 36 | mp3an 1464 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
40 | 39 | eqcomi 2660 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
41 | eqid 2651 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
42 | 10, 25, 40, 41 | decsuc 11573 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
43 | 42 | breq2i 4693 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
44 | 38, 43 | mtbi 311 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 < clt 10112 ℕcn 11058 2c2 11108 5c5 11111 ℕ0cn0 11330 ℤcz 11415 ;cdc 11531 ∥ cdvds 15027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 |
This theorem is referenced by: 11prm 15869 13prm 15870 17prm 15871 19prm 15872 23prm 15873 37prm 15875 43prm 15876 83prm 15877 139prm 15878 163prm 15879 317prm 15880 631prm 15881 257prm 41798 139prmALT 41836 31prm 41837 127prm 41840 |
Copyright terms: Public domain | W3C validator |