Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   GIF version

Theorem dcubic1 24793
 Description: Forward direction of dcubic 24794: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic1.x (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
Assertion
Ref Expression
dcubic1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7 (𝜑 → (𝑇↑3) = (𝐺𝑁))
21oveq1d 6808 . . . . . 6 (𝜑 → ((𝑇↑3)↑2) = ((𝐺𝑁)↑2))
3 dcubic.g . . . . . . 7 (𝜑𝐺 ∈ ℂ)
4 dcubic.n . . . . . . . 8 (𝜑𝑁 = (𝑄 / 2))
5 dcubic.d . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
65halfcld 11479 . . . . . . . 8 (𝜑 → (𝑄 / 2) ∈ ℂ)
74, 6eqeltrd 2850 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
8 binom2sub 13188 . . . . . . 7 ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
93, 7, 8syl2anc 573 . . . . . 6 (𝜑 → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
10 dcubic.2 . . . . . . . 8 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
11 2cnd 11295 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
1211, 3, 7mul12d 10447 . . . . . . . . 9 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝐺 · (2 · 𝑁)))
134oveq2d 6809 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2)))
14 2ne0 11315 . . . . . . . . . . . . 13 2 ≠ 0
1514a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
165, 11, 15divcan2d 11005 . . . . . . . . . . 11 (𝜑 → (2 · (𝑄 / 2)) = 𝑄)
1713, 16eqtrd 2805 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = 𝑄)
1817oveq2d 6809 . . . . . . . . 9 (𝜑 → (𝐺 · (2 · 𝑁)) = (𝐺 · 𝑄))
193, 5mulcomd 10263 . . . . . . . . 9 (𝜑 → (𝐺 · 𝑄) = (𝑄 · 𝐺))
2012, 18, 193eqtrd 2809 . . . . . . . 8 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝑄 · 𝐺))
2110, 20oveq12d 6811 . . . . . . 7 (𝜑 → ((𝐺↑2) − (2 · (𝐺 · 𝑁))) = (((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)))
2221oveq1d 6808 . . . . . 6 (𝜑 → (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
232, 9, 223eqtrd 2809 . . . . 5 (𝜑 → ((𝑇↑3)↑2) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
247sqcld 13213 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℂ)
25 dcubic.m . . . . . . . . 9 (𝜑𝑀 = (𝑃 / 3))
26 dcubic.c . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
27 3cn 11297 . . . . . . . . . . 11 3 ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
29 3ne0 11317 . . . . . . . . . . 11 3 ≠ 0
3029a1i 11 . . . . . . . . . 10 (𝜑 → 3 ≠ 0)
3126, 28, 30divcld 11003 . . . . . . . . 9 (𝜑 → (𝑃 / 3) ∈ ℂ)
3225, 31eqeltrd 2850 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
33 3nn0 11512 . . . . . . . 8 3 ∈ ℕ0
34 expcl 13085 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
3532, 33, 34sylancl 574 . . . . . . 7 (𝜑 → (𝑀↑3) ∈ ℂ)
3624, 35addcld 10261 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝑀↑3)) ∈ ℂ)
375, 3mulcld 10262 . . . . . 6 (𝜑 → (𝑄 · 𝐺) ∈ ℂ)
3836, 24, 37addsubd 10615 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
3924, 35, 24add32d 10465 . . . . . . 7 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
40242timesd 11477 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
4140oveq1d 6808 . . . . . . 7 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
4239, 41eqtr4d 2808 . . . . . 6 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = ((2 · (𝑁↑2)) + (𝑀↑3)))
4342oveq1d 6808 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
4423, 38, 433eqtr2d 2811 . . . 4 (𝜑 → ((𝑇↑3)↑2) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
455, 3, 7subdid 10688 . . . . . . 7 (𝜑 → (𝑄 · (𝐺𝑁)) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
461oveq2d 6809 . . . . . . 7 (𝜑 → (𝑄 · (𝑇↑3)) = (𝑄 · (𝐺𝑁)))
477sqvald 13212 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
4847oveq2d 6809 . . . . . . . . 9 (𝜑 → (2 · (𝑁↑2)) = (2 · (𝑁 · 𝑁)))
4911, 7, 7mulassd 10265 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (2 · (𝑁 · 𝑁)))
5017oveq1d 6808 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (𝑄 · 𝑁))
5148, 49, 503eqtr2d 2811 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = (𝑄 · 𝑁))
5251oveq2d 6809 . . . . . . 7 (𝜑 → ((𝑄 · 𝐺) − (2 · (𝑁↑2))) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
5345, 46, 523eqtr4d 2815 . . . . . 6 (𝜑 → (𝑄 · (𝑇↑3)) = ((𝑄 · 𝐺) − (2 · (𝑁↑2))))
5453oveq1d 6808 . . . . 5 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)))
55 2cn 11293 . . . . . . 7 2 ∈ ℂ
56 mulcl 10222 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → (2 · (𝑁↑2)) ∈ ℂ)
5755, 24, 56sylancr 575 . . . . . 6 (𝜑 → (2 · (𝑁↑2)) ∈ ℂ)
5837, 57, 35subsub4d 10625 . . . . 5 (𝜑 → (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
5954, 58eqtrd 2805 . . . 4 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
6044, 59oveq12d 6811 . . 3 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))))
6157, 35addcld 10261 . . . 4 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ)
62 npncan2 10510 . . . 4 ((((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ ∧ (𝑄 · 𝐺) ∈ ℂ) → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6361, 37, 62syl2anc 573 . . 3 (𝜑 → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6460, 63eqtrd 2805 . 2 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0)
65 dcubic.x . . 3 (𝜑𝑋 ∈ ℂ)
66 dcubic.t . . 3 (𝜑𝑇 ∈ ℂ)
67 dcubic.0 . . 3 (𝜑𝑇 ≠ 0)
68 dcubic1.x . . 3 (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 24791 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0))
7064, 69mpbird 247 1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  (class class class)co 6793  ℂcc 10136  0cc0 10138   + caddc 10141   · cmul 10143   − cmin 10468   / cdiv 10886  2c2 11272  3c3 11273  ℕ0cn0 11494  ↑cexp 13067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190 This theorem is referenced by:  dcubic  24794
 Copyright terms: Public domain W3C validator