![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmasumlem | Structured version Visualization version GIF version |
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
Ref | Expression |
---|---|
dchrvmasumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | dchrmusum.g | . . . . . . . 8 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | dchrmusum.d | . . . . . . . 8 ⊢ 𝐷 = (Base‘𝐺) | |
6 | dchrmusum.1 | . . . . . . . 8 ⊢ 1 = (0g‘𝐺) | |
7 | dchrmusum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | dchrmusum.n1 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
9 | dchrmusum.f | . . . . . . . 8 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
10 | dchrmusum.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
11 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
12 | dchrmusum.2 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrisumn0 25407 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) |
14 | 13 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
15 | ifnefalse 4240 | . . . . . 6 ⊢ (𝑇 ≠ 0 → if(𝑇 = 0, (log‘𝑥), 0) = 0) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑇 = 0, (log‘𝑥), 0) = 0) |
17 | 16 | oveq2d 6827 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0)) |
18 | fzfid 12964 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
19 | 7 | ad2antrr 764 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
20 | elfzelz 12533 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
21 | 20 | adantl 473 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
22 | 4, 1, 5, 2, 19, 21 | dchrzrhcl 25167 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
23 | elfznn 12561 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
24 | 23 | adantl 473 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
25 | vmacl 25041 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ) | |
26 | nndivre 11246 | . . . . . . . . . 10 ⊢ (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) | |
27 | 25, 26 | mpancom 706 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
28 | 24, 27 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
29 | 28 | recnd 10258 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ) |
30 | 22, 29 | mulcld 10250 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
31 | 18, 30 | fsumcl 14661 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
32 | 31 | addid1d 10426 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
33 | 17, 32 | eqtrd 2792 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
34 | 33 | mpteq2dva 4894 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrvmasumif 25389 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) |
36 | 34, 35 | eqeltrrd 2838 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 ∀wral 3048 ifcif 4228 class class class wbr 4802 ↦ cmpt 4879 ‘cfv 6047 (class class class)co 6811 ℝcr 10125 0cc0 10126 1c1 10127 + caddc 10129 · cmul 10131 +∞cpnf 10261 ≤ cle 10265 − cmin 10456 / cdiv 10874 ℕcn 11210 ℤcz 11567 ℝ+crp 12023 [,)cico 12368 ...cfz 12517 ⌊cfl 12783 seqcseq 12993 abscabs 14171 ⇝ cli 14412 𝑂(1)co1 14414 Σcsu 14613 Basecbs 16057 0gc0g 16300 ℤRHomczrh 20048 ℤ/nℤczn 20051 logclog 24498 Λcvma 25015 DChrcdchr 25154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-inf2 8709 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 ax-addf 10205 ax-mulf 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-iin 4673 df-disj 4771 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-isom 6056 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-of 7060 df-rpss 7100 df-om 7229 df-1st 7331 df-2nd 7332 df-supp 7462 df-tpos 7519 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-2o 7728 df-oadd 7731 df-omul 7732 df-er 7909 df-ec 7911 df-qs 7915 df-map 8023 df-pm 8024 df-ixp 8073 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-fsupp 8439 df-fi 8480 df-sup 8511 df-inf 8512 df-oi 8578 df-card 8953 df-acn 8956 df-cda 9180 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-xnn0 11554 df-z 11568 df-dec 11684 df-uz 11878 df-q 11980 df-rp 12024 df-xneg 12137 df-xadd 12138 df-xmul 12139 df-ioo 12370 df-ioc 12371 df-ico 12372 df-icc 12373 df-fz 12518 df-fzo 12658 df-fl 12785 df-mod 12861 df-seq 12994 df-exp 13053 df-fac 13253 df-bc 13282 df-hash 13310 df-word 13483 df-concat 13485 df-s1 13486 df-shft 14004 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-abs 14173 df-limsup 14399 df-clim 14416 df-rlim 14417 df-o1 14418 df-lo1 14419 df-sum 14614 df-ef 14995 df-e 14996 df-sin 14997 df-cos 14998 df-pi 15000 df-dvds 15181 df-gcd 15417 df-prm 15586 df-numer 15643 df-denom 15644 df-phi 15671 df-pc 15742 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-starv 16156 df-sca 16157 df-vsca 16158 df-ip 16159 df-tset 16160 df-ple 16161 df-ds 16164 df-unif 16165 df-hom 16166 df-cco 16167 df-rest 16283 df-topn 16284 df-0g 16302 df-gsum 16303 df-topgen 16304 df-pt 16305 df-prds 16308 df-xrs 16362 df-qtop 16367 df-imas 16368 df-qus 16369 df-xps 16370 df-mre 16446 df-mrc 16447 df-acs 16449 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-mhm 17534 df-submnd 17535 df-grp 17624 df-minusg 17625 df-sbg 17626 df-mulg 17740 df-subg 17790 df-nsg 17791 df-eqg 17792 df-ghm 17857 df-gim 17900 df-ga 17921 df-cntz 17948 df-oppg 17974 df-od 18146 df-gex 18147 df-pgp 18148 df-lsm 18249 df-pj1 18250 df-cmn 18393 df-abl 18394 df-cyg 18478 df-dprd 18592 df-dpj 18593 df-mgp 18688 df-ur 18700 df-ring 18747 df-cring 18748 df-oppr 18821 df-dvdsr 18839 df-unit 18840 df-invr 18870 df-dvr 18881 df-rnghom 18915 df-drng 18949 df-subrg 18978 df-lmod 19065 df-lss 19133 df-lsp 19172 df-sra 19372 df-rgmod 19373 df-lidl 19374 df-rsp 19375 df-2idl 19432 df-psmet 19938 df-xmet 19939 df-met 19940 df-bl 19941 df-mopn 19942 df-fbas 19943 df-fg 19944 df-cnfld 19947 df-zring 20019 df-zrh 20052 df-zn 20055 df-top 20899 df-topon 20916 df-topsp 20937 df-bases 20950 df-cld 21023 df-ntr 21024 df-cls 21025 df-nei 21102 df-lp 21140 df-perf 21141 df-cn 21231 df-cnp 21232 df-haus 21319 df-cmp 21390 df-tx 21565 df-hmeo 21758 df-fil 21849 df-fm 21941 df-flim 21942 df-flf 21943 df-xms 22324 df-ms 22325 df-tms 22326 df-cncf 22880 df-0p 23634 df-limc 23827 df-dv 23828 df-ply 24141 df-idp 24142 df-coe 24143 df-dgr 24144 df-quot 24243 df-log 24500 df-cxp 24501 df-em 24916 df-cht 25020 df-vma 25021 df-chp 25022 df-ppi 25023 df-mu 25024 df-dchr 25155 |
This theorem is referenced by: dchrvmasum 25411 |
Copyright terms: Public domain | W3C validator |