MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem2 25411
Description: Lemma for dchrvmasum 25434. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝑦, 1   𝐶,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑥,𝑎,𝑦   𝑥,𝐸,𝑦   𝑦,𝐾   𝑛,𝑁,𝑥,𝑦   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑛,𝑎,𝐿,𝑥,𝑦   𝑋,𝑎,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   𝑇(𝑎)   1 (𝑎)   𝐸(𝑛,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑛,𝑎)   𝐾(𝑥,𝑛,𝑎)   𝑁(𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmasumiflem2
Dummy variables 𝑘 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10267 . 2 (𝜑 → 1 ∈ ℝ)
2 fzfid 12986 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
3 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
4 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
5 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
6 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
7 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
87ad2antrr 764 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
9 elfzelz 12555 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
109adantl 473 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
113, 4, 5, 6, 8, 10dchrzrhcl 25190 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
12 elfznn 12583 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1312adantl 473 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
14 mucl 25087 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
1615zred 11694 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℝ)
1716, 13nndivred 11281 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 10280 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1911, 18mulcld 10272 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
202, 19fsumcl 14683 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
21 dchrvmasumif.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
22 climcl 14449 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
2321, 22syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
2423adantr 472 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑆 ∈ ℂ)
2520, 24mulcld 10272 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) ∈ ℂ)
26 0cnd 10245 . . . . . 6 ((𝜑𝑆 = 0) → 0 ∈ ℂ)
27 df-ne 2933 . . . . . . 7 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
28 dchrvmasumif.t . . . . . . . . . 10 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
29 climcl 14449 . . . . . . . . . 10 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
3028, 29syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
3130adantr 472 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑇 ∈ ℂ)
3223adantr 472 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
33 simpr 479 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ≠ 0)
3431, 32, 33divcld 11013 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑇 / 𝑆) ∈ ℂ)
3527, 34sylan2br 494 . . . . . 6 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑇 / 𝑆) ∈ ℂ)
3626, 35ifclda 4264 . . . . 5 (𝜑 → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
3736adantr 472 . . . 4 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
38 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
39 rpvmasum.1 . . . . 5 1 = (0g𝐺)
40 dchrisum.n1 . . . . 5 (𝜑𝑋1 )
41 dchrvmasumif.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
42 dchrvmasumif.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
43 dchrvmasumif.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
444, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43dchrmusum2 25403 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆)) ∈ 𝑂(1))
45 rpssre 12056 . . . . 5 + ⊆ ℝ
46 o1const 14569 . . . . 5 ((ℝ+ ⊆ ℝ ∧ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4745, 36, 46sylancr 698 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4825, 37, 44, 47o1mul2 14574 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1))
49 fzfid 12986 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
508adantr 472 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
51 elfzelz 12555 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℤ)
5251adantl 473 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℤ)
533, 4, 5, 6, 50, 52dchrzrhcl 25190 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
54 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5512nnrpd 12083 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
56 rpdivcl 12069 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
5754, 55, 56syl2an 495 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
58 elfznn 12583 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℕ)
5958nnrpd 12083 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℝ+)
60 ifcl 4274 . . . . . . . . . . . 12 (((𝑥 / 𝑑) ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6157, 59, 60syl2an 495 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6261relogcld 24589 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) ∈ ℝ)
6358adantl 473 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℕ)
6462, 63nndivred 11281 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℝ)
6564recnd 10280 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℂ)
6653, 65mulcld 10272 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6749, 66fsumcl 14683 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6819, 67mulcld 10272 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
692, 68fsumcl 14683 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
7025, 37mulcld 10272 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ ℂ)
71 0cn 10244 . . . . . . . . . 10 0 ∈ ℂ
7230ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
73 ifcl 4274 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7471, 72, 73sylancr 698 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7519, 67, 74subdid 10698 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7675sumeq2dv 14652 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7719, 74mulcld 10272 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
782, 68, 77fsumsub 14739 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7920, 24, 37mulassd 10275 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
80 ovif2 6904 . . . . . . . . . . . 12 (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆)))
8123mul01d 10447 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 · 0) = 0)
8281ifeq1d 4248 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))))
8331, 32, 33divcan2d 11015 . . . . . . . . . . . . . . 15 ((𝜑𝑆 ≠ 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8427, 83sylan2br 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8584ifeq2da 4261 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8682, 85eqtrd 2794 . . . . . . . . . . . 12 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8780, 86syl5eq 2806 . . . . . . . . . . 11 (𝜑 → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8887adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8988oveq2d 6830 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9071, 30, 73sylancr 698 . . . . . . . . . . 11 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
9190adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
922, 91, 19fsummulc1 14736 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9379, 89, 923eqtrrd 2799 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))
9493oveq2d 6830 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9576, 78, 943eqtrd 2798 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9695mpteq2dva 4896 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))))
97 dchrvmasumif.g . . . . . 6 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
98 dchrvmasumif.e . . . . . 6 (𝜑𝐸 ∈ (0[,)+∞))
99 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
1004, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99dchrvmasumiflem1 25410 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
10196, 100eqeltrrd 2840 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) ∈ 𝑂(1))
10269, 70, 101o1dif 14579 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1)))
10348, 102mpbird 247 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1))
1047ad2antrr 764 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
105 elfzelz 12555 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
106105adantl 473 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1073, 4, 5, 6, 104, 106dchrzrhcl 25190 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
108 elfznn 12583 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109108adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
110 vmacl 25064 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
111 nndivre 11268 . . . . . . . 8 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
112110, 111mpancom 706 . . . . . . 7 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
113109, 112syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
114113recnd 10280 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
115107, 114mulcld 10272 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1162, 115fsumcl 14683 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
117 relogcl 24542 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
118117adantl 473 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
119118recnd 10280 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
120 ifcl 4274 . . . 4 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
121119, 71, 120sylancl 697 . . 3 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
122116, 121addcld 10271 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) ∈ ℂ)
123122abscld 14394 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
124123adantrr 755 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
12538adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ ℕ)
1267adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝐷)
12740adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋1 )
128 simprl 811 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
129 simprr 813 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
1304, 6, 125, 3, 5, 39, 126, 127, 128, 129dchrvmasum2if 25406 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))
131130fveq2d 6357 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
132 eqle 10351 . . 3 (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ ∧ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
133124, 131, 132syl2anc 696 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
1341, 103, 69, 122, 133o1le 14602 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wss 3715  ifcif 4230   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153  +∞cpnf 10283  cle 10287  cmin 10478   / cdiv 10896  cn 11232  3c3 11283  cz 11589  +crp 12045  [,)cico 12390  ...cfz 12539  cfl 12805  seqcseq 13015  abscabs 14193  cli 14434  𝑂(1)co1 14436  Σcsu 14635  Basecbs 16079  0gc0g 16322  ℤRHomczrh 20070  ℤ/nczn 20073  logclog 24521  Λcvma 25038  μcmu 25041  DChrcdchr 25177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-ec 7915  df-qs 7919  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-o1 14440  df-lo1 14441  df-sum 14636  df-ef 15017  df-e 15018  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-prm 15608  df-pc 15764  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-qus 16391  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-cntz 17970  df-od 18168  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-sra 19394  df-rgmod 19395  df-lidl 19396  df-rsp 19397  df-2idl 19454  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zn 20077  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-cxp 24524  df-em 24939  df-vma 25044  df-mu 25047  df-dchr 25178
This theorem is referenced by:  dchrvmasumif  25412
  Copyright terms: Public domain W3C validator