![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrmusumlem | Structured version Visualization version GIF version |
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
Ref | Expression |
---|---|
dchrmusumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfid 12980 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
2 | dchrmusum.g | . . . . . . . . 9 ⊢ 𝐺 = (DChr‘𝑁) | |
3 | rpvmasum.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
4 | dchrmusum.d | . . . . . . . . 9 ⊢ 𝐷 = (Base‘𝐺) | |
5 | rpvmasum.l | . . . . . . . . 9 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
6 | dchrmusum.b | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
7 | 6 | ad2antrr 705 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
8 | elfzelz 12549 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
9 | 8 | adantl 467 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
10 | 2, 3, 4, 5, 7, 9 | dchrzrhcl 25191 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
11 | elfznn 12577 | . . . . . . . . . . . . 13 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
12 | 11 | adantl 467 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
13 | mucl 25088 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ) | |
14 | 12, 13 | syl 17 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ) |
15 | 14 | zred 11684 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ) |
16 | 15, 12 | nndivred 11271 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ) |
17 | 16 | recnd 10270 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ) |
18 | 10, 17 | mulcld 10262 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
19 | 1, 18 | fsumcl 14672 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) ∈ ℂ) |
20 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
21 | climcl 14438 | . . . . . . . 8 ⊢ (seq1( + , 𝐹) ⇝ 𝑇 → 𝑇 ∈ ℂ) | |
22 | 20, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
23 | 22 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ) |
24 | 19, 23 | mulcld 10262 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) ∈ ℂ) |
25 | rpvmasum.a | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
26 | dchrmusum.1 | . . . . . . 7 ⊢ 1 = (0g‘𝐺) | |
27 | dchrmusum.n1 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
28 | dchrmusum.f | . . . . . . 7 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
29 | dchrmusum.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
30 | dchrmusum.2 | . . . . . . 7 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
31 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrisumn0 25431 | . . . . . 6 ⊢ (𝜑 → 𝑇 ≠ 0) |
32 | 31 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
33 | 24, 23, 32 | divrecd 11006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) |
34 | 19, 23, 32 | divcan4d 11009 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) / 𝑇) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
35 | 33, 34 | eqtr3d 2807 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) |
36 | 35 | mpteq2dva 4878 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)))) |
37 | 22, 31 | reccld 10996 | . . . 4 ⊢ (𝜑 → (1 / 𝑇) ∈ ℂ) |
38 | 37 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1 / 𝑇) ∈ ℂ) |
39 | 3, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30 | dchrmusum2 25404 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇)) ∈ 𝑂(1)) |
40 | rpssre 12046 | . . . 4 ⊢ ℝ+ ⊆ ℝ | |
41 | o1const 14558 | . . . 4 ⊢ ((ℝ+ ⊆ ℝ ∧ (1 / 𝑇) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) | |
42 | 40, 37, 41 | sylancr 575 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑇)) ∈ 𝑂(1)) |
43 | 24, 38, 39, 42 | o1mul2 14563 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛)) · 𝑇) · (1 / 𝑇))) ∈ 𝑂(1)) |
44 | 36, 43 | eqeltrrd 2851 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((μ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ⊆ wss 3723 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 · cmul 10143 +∞cpnf 10273 ≤ cle 10277 − cmin 10468 / cdiv 10886 ℕcn 11222 ℤcz 11579 ℝ+crp 12035 [,)cico 12382 ...cfz 12533 ⌊cfl 12799 seqcseq 13008 abscabs 14182 ⇝ cli 14423 𝑂(1)co1 14425 Σcsu 14624 Basecbs 16064 0gc0g 16308 ℤRHomczrh 20063 ℤ/nℤczn 20066 μcmu 25042 DChrcdchr 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-rpss 7084 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-xnn0 11566 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-o1 14429 df-lo1 14430 df-sum 14625 df-ef 15004 df-e 15005 df-sin 15006 df-cos 15007 df-pi 15009 df-dvds 15190 df-gcd 15425 df-prm 15593 df-numer 15650 df-denom 15651 df-phi 15678 df-pc 15749 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-qus 16377 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-nsg 17800 df-eqg 17801 df-ghm 17866 df-gim 17909 df-ga 17930 df-cntz 17957 df-oppg 17983 df-od 18155 df-gex 18156 df-pgp 18157 df-lsm 18258 df-pj1 18259 df-cmn 18402 df-abl 18403 df-cyg 18487 df-dprd 18602 df-dpj 18603 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-rnghom 18925 df-drng 18959 df-subrg 18988 df-lmod 19075 df-lss 19143 df-lsp 19185 df-sra 19387 df-rgmod 19388 df-lidl 19389 df-rsp 19390 df-2idl 19447 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-zring 20034 df-zrh 20067 df-zn 20070 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-cmp 21411 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-0p 23657 df-limc 23850 df-dv 23851 df-ply 24164 df-idp 24165 df-coe 24166 df-dgr 24167 df-quot 24266 df-log 24524 df-cxp 24525 df-em 24940 df-cht 25044 df-vma 25045 df-chp 25046 df-ppi 25047 df-mu 25048 df-dchr 25179 |
This theorem is referenced by: dchrmusum 25434 |
Copyright terms: Public domain | W3C validator |