Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulid2 Structured version   Visualization version   GIF version

Theorem dchrmulid2 25198
 Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmulid2.t · = (+g𝐺)
dchrmulid2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrmulid2 (𝜑 → ( 1 · 𝑋) = 𝑋)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchrmulid2
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmulid2.t . . 3 · = (+g𝐺)
5 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
6 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
7 dchr1cl.o . . . 4 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
8 dchrmulid2.x . . . . 5 (𝜑𝑋𝐷)
91, 3dchrrcl 25186 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
111, 2, 3, 5, 6, 7, 10dchr1cl 25197 . . 3 (𝜑1𝐷)
121, 2, 3, 4, 11, 8dchrmul 25194 . 2 (𝜑 → ( 1 · 𝑋) = ( 1𝑓 · 𝑋))
13 oveq1 6803 . . . . . 6 (1 = if(𝑘𝑈, 1, 0) → (1 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1413eqeq1d 2773 . . . . 5 (1 = if(𝑘𝑈, 1, 0) → ((1 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
15 oveq1 6803 . . . . . 6 (0 = if(𝑘𝑈, 1, 0) → (0 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1615eqeq1d 2773 . . . . 5 (0 = if(𝑘𝑈, 1, 0) → ((0 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
171, 2, 3, 5, 8dchrf 25188 . . . . . . . 8 (𝜑𝑋:𝐵⟶ℂ)
1817ffvelrnda 6504 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
1918adantr 466 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
2019mulid2d 10264 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (1 · (𝑋𝑘)) = (𝑋𝑘))
21 0cn 10238 . . . . . . 7 0 ∈ ℂ
2221mul02i 10431 . . . . . 6 (0 · 0) = 0
231, 2, 5, 6, 10, 3dchrelbas2 25183 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))))
248, 23mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈)))
2524simprd 483 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2625r19.21bi 3081 . . . . . . . . 9 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2726necon1bd 2961 . . . . . . . 8 ((𝜑𝑘𝐵) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2827imp 393 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (𝑋𝑘) = 0)
2928oveq2d 6812 . . . . . 6 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (0 · 0))
3022, 29, 283eqtr4a 2831 . . . . 5 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (𝑋𝑘))
3114, 16, 20, 30ifbothda 4263 . . . 4 ((𝜑𝑘𝐵) → (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘))
3231mpteq2dva 4879 . . 3 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ (𝑋𝑘)))
335fvexi 6345 . . . . 5 𝐵 ∈ V
3433a1i 11 . . . 4 (𝜑𝐵 ∈ V)
35 ax-1cn 10200 . . . . . 6 1 ∈ ℂ
3635, 21keepel 4295 . . . . 5 if(𝑘𝑈, 1, 0) ∈ ℂ
3736a1i 11 . . . 4 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, 0) ∈ ℂ)
387a1i 11 . . . 4 (𝜑1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
3917feqmptd 6393 . . . 4 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
4034, 37, 18, 38, 39offval2 7065 . . 3 (𝜑 → ( 1𝑓 · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))))
4132, 40, 393eqtr4d 2815 . 2 (𝜑 → ( 1𝑓 · 𝑋) = 𝑋)
4212, 41eqtrd 2805 1 (𝜑 → ( 1 · 𝑋) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  Vcvv 3351  ifcif 4226   ↦ cmpt 4864  ‘cfv 6030  (class class class)co 6796   ∘𝑓 cof 7046  ℂcc 10140  0cc0 10142  1c1 10143   · cmul 10147  ℕcn 11226  Basecbs 16064  +gcplusg 16149   MndHom cmhm 17541  mulGrpcmgp 18697  Unitcui 18847  ℂfldccnfld 19961  ℤ/nℤczn 20066  DChrcdchr 25178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221  ax-mulf 10222 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-ec 7902  df-qs 7906  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-imas 16376  df-qus 16377  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-nsg 17800  df-eqg 17801  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rsp 19390  df-2idl 19447  df-cnfld 19962  df-zring 20034  df-zn 20070  df-dchr 25179 This theorem is referenced by:  dchrabl  25200  dchr1  25203
 Copyright terms: Public domain W3C validator