Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlema Structured version   Visualization version   GIF version

Theorem dchrisumlema 25222
 Description: Lemma for dchrisum 25226. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisumlema (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝐹,𝑥   𝑛,𝐼,𝑥   𝑥,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥   𝑛,𝑀,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥)   𝐺(𝑥,𝑛)

Proof of Theorem dchrisumlema
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
21ralrimiva 2995 . . 3 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3 nfcsb1v 3582 . . . . 5 𝑛𝐼 / 𝑛𝐴
43nfel1 2808 . . . 4 𝑛𝐼 / 𝑛𝐴 ∈ ℝ
5 csbeq1a 3575 . . . . 5 (𝑛 = 𝐼𝐴 = 𝐼 / 𝑛𝐴)
65eleq1d 2715 . . . 4 (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ 𝐼 / 𝑛𝐴 ∈ ℝ))
74, 6rspc 3334 . . 3 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝐼 / 𝑛𝐴 ∈ ℝ))
82, 7syl5com 31 . 2 (𝜑 → (𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ))
9 eqid 2651 . . . 4 (ℤ‘((⌊‘𝐼) + 1)) = (ℤ‘((⌊‘𝐼) + 1))
10 dchrisum.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnred 11073 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
12 elicopnf 12307 . . . . . . . 8 (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1311, 12syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1413simprbda 652 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ)
1514flcld 12639 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℤ)
1615peano2zd 11523 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℤ)
17 nnuz 11761 . . . . . 6 ℕ = (ℤ‘1)
18 1zzd 11446 . . . . . 6 (𝜑 → 1 ∈ ℤ)
19 dchrisum.6 . . . . . 6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
20 nnrp 11880 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
2120ssriv 3640 . . . . . . 7 ℕ ⊆ ℝ+
22 eqid 2651 . . . . . . . 8 (𝑛 ∈ ℝ+𝐴) = (𝑛 ∈ ℝ+𝐴)
2322, 1dmmptd 6062 . . . . . . 7 (𝜑 → dom (𝑛 ∈ ℝ+𝐴) = ℝ+)
2421, 23syl5sseqr 3687 . . . . . 6 (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+𝐴))
2517, 18, 19, 24rlimclim1 14320 . . . . 5 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
2625adantr 480 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
27 0red 10079 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ∈ ℝ)
2811adantr 480 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
2910nngt0d 11102 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
3029adantr 480 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀)
3113simplbda 653 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀𝐼)
3227, 28, 14, 30, 31ltletrd 10235 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼)
3314, 32elrpd 11907 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ+)
342adantr 480 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3533, 34, 7sylc 65 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℝ)
3635recnd 10106 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℂ)
37 ssid 3657 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ⊆ (ℤ‘((⌊‘𝐼) + 1))
38 fvex 6239 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ∈ V
3937, 38climconst2 14323 . . . . 5 ((𝐼 / 𝑛𝐴 ∈ ℂ ∧ ((⌊‘𝐼) + 1) ∈ ℤ) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4036, 16, 39syl2anc 694 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4133rpge0d 11914 . . . . . . . . . 10 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼)
42 flge0nn0 12661 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
4314, 41, 42syl2anc 694 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℕ0)
44 nn0p1nn 11370 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℕ)
46 eluznn 11796 . . . . . . . 8 ((((⌊‘𝐼) + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4745, 46sylan 487 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4847nnrpd 11908 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+)
492ad2antrr 762 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
50 nfcsb1v 3582 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴
5150nfel1 2808 . . . . . . . 8 𝑛𝑖 / 𝑛𝐴 ∈ ℝ
52 csbeq1a 3575 . . . . . . . . 9 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
5352eleq1d 2715 . . . . . . . 8 (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ 𝑖 / 𝑛𝐴 ∈ ℝ))
5451, 53rspc 3334 . . . . . . 7 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛𝐴 ∈ ℝ))
5548, 49, 54sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
5622fvmpts 6324 . . . . . 6 ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5748, 55, 56syl2anc 694 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5857, 55eqeltrd 2730 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ∈ ℝ)
59 fvconst2g 6508 . . . . . 6 ((𝐼 / 𝑛𝐴 ∈ ℝ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6035, 59sylan 487 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6135adantr 480 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 / 𝑛𝐴 ∈ ℝ)
6260, 61eqeltrd 2730 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) ∈ ℝ)
6333adantr 480 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ+)
64 dchrisum.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
65643expia 1286 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6665ralrimivva 3000 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6766ad2antrr 762 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
68 nfcv 2793 . . . . . . . . 9 𝑛+
69 nfv 1883 . . . . . . . . . 10 𝑛(𝑀𝐼𝐼𝑥)
70 nfcv 2793 . . . . . . . . . . 11 𝑛𝐵
71 nfcv 2793 . . . . . . . . . . 11 𝑛
7270, 71, 3nfbr 4732 . . . . . . . . . 10 𝑛 𝐵𝐼 / 𝑛𝐴
7369, 72nfim 1865 . . . . . . . . 9 𝑛((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
7468, 73nfral 2974 . . . . . . . 8 𝑛𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
75 breq2 4689 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑀𝑛𝑀𝐼))
76 breq1 4688 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑛𝑥𝐼𝑥))
7775, 76anbi12d 747 . . . . . . . . . 10 (𝑛 = 𝐼 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝐼𝐼𝑥)))
785breq2d 4697 . . . . . . . . . 10 (𝑛 = 𝐼 → (𝐵𝐴𝐵𝐼 / 𝑛𝐴))
7977, 78imbi12d 333 . . . . . . . . 9 (𝑛 = 𝐼 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8079ralbidv 3015 . . . . . . . 8 (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8174, 80rspc 3334 . . . . . . 7 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8263, 67, 81sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴))
8331adantr 480 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑀𝐼)
8414adantr 480 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ)
85 reflcl 12637 . . . . . . . . 9 (𝐼 ∈ ℝ → (⌊‘𝐼) ∈ ℝ)
86 peano2re 10247 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈ ℝ)
8847nnred 11073 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ)
89 fllep1 12642 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1))
9014, 89syl 17 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1))
9190adantr 480 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1))
92 eluzle 11738 . . . . . . . . 9 (𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9392adantl 481 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9484, 87, 88, 91, 93letrd 10232 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼𝑖)
9583, 94jca 553 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (𝑀𝐼𝐼𝑖))
96 breq2 4689 . . . . . . . . 9 (𝑥 = 𝑖 → (𝐼𝑥𝐼𝑖))
9796anbi2d 740 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑀𝐼𝐼𝑥) ↔ (𝑀𝐼𝐼𝑖)))
98 eqvisset 3242 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 ∈ V)
99 equtr2 2000 . . . . . . . . . . . 12 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝑥 = 𝑛)
100 dchrisum.2 . . . . . . . . . . . . 13 (𝑛 = 𝑥𝐴 = 𝐵)
101100equcoms 1993 . . . . . . . . . . . 12 (𝑥 = 𝑛𝐴 = 𝐵)
10299, 101syl 17 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝐴 = 𝐵)
10398, 102csbied 3593 . . . . . . . . . 10 (𝑥 = 𝑖𝑖 / 𝑛𝐴 = 𝐵)
104103eqcomd 2657 . . . . . . . . 9 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑛𝐴)
105104breq1d 4695 . . . . . . . 8 (𝑥 = 𝑖 → (𝐵𝐼 / 𝑛𝐴𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴))
10697, 105imbi12d 333 . . . . . . 7 (𝑥 = 𝑖 → (((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) ↔ ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
107106rspcv 3336 . . . . . 6 (𝑖 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) → ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
10848, 82, 95, 107syl3c 66 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)
109108, 57, 603brtr4d 4717 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ≤ (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖))
1109, 16, 26, 40, 58, 62, 109climle 14414 . . 3 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼 / 𝑛𝐴)
111110ex 449 . 2 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴))
1128, 111jca 553 1 (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  Vcvv 3231  ⦋csb 3566  {csn 4210   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  dom cdm 5143  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109   < clt 10112   ≤ cle 10113  ℕcn 11058  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  [,)cico 12215  ⌊cfl 12631   ⇝ cli 14259   ⇝𝑟 crli 14260  Basecbs 15904  0gc0g 16147  ℤRHomczrh 19896  ℤ/nℤczn 19899  DChrcdchr 25002 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264 This theorem is referenced by:  dchrisumlem2  25224  dchrisumlem3  25225
 Copyright terms: Public domain W3C validator