MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Visualization version   GIF version

Theorem dchrisum0lem3 25407
Description: Lemma for dchrisum0 25408. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem3
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10247 . 2 (𝜑 → 1 ∈ ℝ)
2 sumex 14617 . . . 4 Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V
32a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V)
4 sumex 14617 . . . 4 Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V
54a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V)
6 rpvmasum.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum.l . . . . 5 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
9 rpvmasum2.g . . . . 5 𝐺 = (DChr‘𝑁)
10 rpvmasum2.d . . . . 5 𝐷 = (Base‘𝐺)
11 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
12 rpvmasum2.w . . . . . . . 8 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
13 ssrab2 3828 . . . . . . . 8 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
1412, 13eqsstri 3776 . . . . . . 7 𝑊 ⊆ (𝐷 ∖ { 1 })
15 difss 3880 . . . . . . 7 (𝐷 ∖ { 1 }) ⊆ 𝐷
1614, 15sstri 3753 . . . . . 6 𝑊𝐷
17 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
1816, 17sseldi 3742 . . . . 5 (𝜑𝑋𝐷)
1914, 17sseldi 3742 . . . . . 6 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
20 eldifsni 4466 . . . . . 6 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
2119, 20syl 17 . . . . 5 (𝜑𝑋1 )
22 eqid 2760 . . . . 5 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
236, 7, 8, 9, 10, 11, 18, 21, 22dchrmusumlema 25381 . . . 4 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
248adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
2517adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
26 dchrisum0lem1.f . . . . . . 7 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
27 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
2827adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝐶 ∈ (0[,)+∞))
29 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3029adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , 𝐹) ⇝ 𝑆)
31 dchrisum0.1 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
3231adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
33 eqid 2760 . . . . . . 7 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
3433divsqrsum 24907 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ∈ dom ⇝𝑟
3533divsqrsumf 24906 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℝ
36 ax-resscn 10185 . . . . . . . . . . . 12 ℝ ⊆ ℂ
37 fss 6217 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ)
3835, 36, 37mp2an 710 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ
3938a1i 11 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ)
40 rpsup 12859 . . . . . . . . . . 11 sup(ℝ+, ℝ*, < ) = +∞
4140a1i 11 . . . . . . . . . 10 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
4239, 41rlimdm 14481 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ∈ dom ⇝𝑟 ↔ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))))))
4334, 42mpbii 223 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))))
4443adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))))
45 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
46 simprrl 823 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
47 simprrr 824 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
486, 7, 24, 9, 10, 11, 12, 25, 26, 28, 30, 32, 33, 44, 22, 45, 46, 47dchrisum0lem2 25406 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
4948rexlimdvaa 3170 . . . . 5 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)))
5049exlimdv 2010 . . . 4 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)))
5123, 50mpd 15 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
526, 7, 8, 9, 10, 11, 12, 17, 26, 27, 29, 31dchrisum0lem1 25404 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
533, 5, 51, 52o1add2 14553 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))) ∈ 𝑂(1))
54 ovexd 6843 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ V)
55 fzfid 12966 . . 3 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(𝑥↑2))) ∈ Fin)
56 fzfid 12966 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
5718ad2antrr 764 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑋𝐷)
58 elfzelz 12535 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℤ)
5958adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℤ)
609, 6, 10, 7, 57, 59dchrzrhcl 25169 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
6160adantr 472 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
62 elfznn 12563 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℕ)
6362adantl 473 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℕ)
6463nnrpd 12063 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℝ+)
65 elfznn 12563 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
6665nnrpd 12063 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℝ+)
67 rpmulcl 12048 . . . . . . . 8 ((𝑚 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑚 · 𝑑) ∈ ℝ+)
6864, 66, 67syl2an 495 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 · 𝑑) ∈ ℝ+)
6968rpsqrtcld 14349 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈ ℝ+)
7069rpcnd 12067 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈ ℂ)
7169rpne0d 12070 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ≠ 0)
7261, 70, 71divcld 10993 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7356, 72fsumcl 14663 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7455, 73fsumcl 14663 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7574abscld 14374 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ)
7675adantrr 755 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ)
7763adantr 472 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℕ)
7877nnrpd 12063 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℝ+)
7978rprege0d 12072 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
8065adantl 473 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
8180nnrpd 12063 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
8281rprege0d 12072 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
83 sqrtmul 14199 . . . . . . . . . . 11 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑)) → (√‘(𝑚 · 𝑑)) = ((√‘𝑚) · (√‘𝑑)))
8479, 82, 83syl2anc 696 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) = ((√‘𝑚) · (√‘𝑑)))
8584oveq2d 6829 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
8678rpsqrtcld 14349 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑚) ∈ ℝ+)
8786rpcnne0d 12074 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
8881rpsqrtcld 14349 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
8988rpcnne0d 12074 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
90 divdiv1 10928 . . . . . . . . . 10 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
9161, 87, 89, 90syl3anc 1477 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
9285, 91eqtr4d 2797 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9392sumeq2dv 14632 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9493sumeq2dv 14632 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9594adantrr 755 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
96 simpr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9796rpred 12065 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
98 reflcl 12791 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9997, 98syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
10099ltp1d 11146 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
101 fzdisj 12561 . . . . . . . 8 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
102100, 101syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
103102adantrr 755 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
10496rprege0d 12072 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
105 flge0nn0 12815 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
106 nn0p1nn 11524 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
107104, 105, 1063syl 18 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
108 nnuz 11916 . . . . . . . . 9 ℕ = (ℤ‘1)
109107, 108syl6eleq 2849 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
110109adantrr 755 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
11197adantrr 755 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
112 2z 11601 . . . . . . . . . . 11 2 ∈ ℤ
113 rpexpcl 13073 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
11496, 112, 113sylancl 697 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
115114adantrr 755 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) ∈ ℝ+)
116115rpred 12065 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) ∈ ℝ)
117111recnd 10260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
118117mulid1d 10249 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥)
119 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
120 1red 10247 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ)
121 rpregt0 12039 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
122121ad2antrl 766 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123 lemul2 11068 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥)))
124120, 111, 122, 123syl3anc 1477 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥)))
125119, 124mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) ≤ (𝑥 · 𝑥))
126118, 125eqbrtrrd 4828 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ (𝑥 · 𝑥))
127117sqvald 13199 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) = (𝑥 · 𝑥))
128126, 127breqtrrd 4832 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ (𝑥↑2))
129 flword2 12808 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ 𝑥 ≤ (𝑥↑2)) → (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥)))
130111, 116, 128, 129syl3anc 1477 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥)))
131 fzsplit2 12559 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘(𝑥↑2))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))))
132110, 130, 131syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(𝑥↑2))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))))
133 fzfid 12966 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(𝑥↑2))) ∈ Fin)
13493, 73eqeltrrd 2840 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
135134adantlrr 759 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
136103, 132, 133, 135fsumsplit 14670 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
13795, 136eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
138137fveq2d 6356 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))))
139 eqle 10331 . . 3 (((abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ ∧ (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))))
14076, 138, 139syl2anc 696 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))))
1411, 53, 54, 74, 140o1le 14582 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  {csn 4321   class class class wbr 4804  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  supcsup 8511  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263  *cxr 10265   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  +crp 12025  [,)cico 12370  ...cfz 12519  cfl 12785  seqcseq 12995  cexp 13054  csqrt 14172  abscabs 14173  cli 14414  𝑟 crli 14415  𝑂(1)co1 14416  Σcsu 14615  Basecbs 16059  0gc0g 16302  ℤRHomczrh 20050  ℤ/nczn 20053  DChrcdchr 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-o1 14420  df-lo1 14421  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-phi 15673  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-qus 16371  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cntz 17950  df-od 18148  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-sra 19374  df-rgmod 19375  df-lidl 19376  df-rsp 19377  df-2idl 19434  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-zn 20057  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503  df-dchr 25157
This theorem is referenced by:  dchrisum0  25408
  Copyright terms: Public domain W3C validator