MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Visualization version   GIF version

Theorem dchrisum0lem2 25377
Description: Lemma for dchrisum0 25379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
dchrisum0lem2.k 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisum0lem2.e (𝜑𝐸 ∈ (0[,)+∞))
dchrisum0lem2.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrisum0lem2.3 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
Assertion
Ref Expression
dchrisum0lem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝐸,𝑑,𝑚,𝑥,𝑦   𝑚,𝐾,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥,𝑦   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐸(𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cnd 11256 . . 3 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
2 rpcn 12005 . . . . 5 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 473 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 fzfid 12937 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
5 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
6 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
8 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
9 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
10 ssrab2 3816 . . . . . . . . . . 11 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
119, 10eqsstri 3764 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
12 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
1311, 12sseldi 3730 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1413eldifad 3715 . . . . . . . 8 (𝜑𝑋𝐷)
1514ad2antrr 764 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
16 elfzelz 12506 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
1716adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℤ)
185, 6, 7, 8, 15, 17dchrzrhcl 25140 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
19 elfznn 12534 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
2019nnrpd 12034 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
2120adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2221rpcnd 12038 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℂ)
2321rpne0d 12041 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ≠ 0)
2418, 22, 23divcld 10964 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
254, 24fsumcl 14634 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
263, 25mulcld 10223 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
27 rpssre 12007 . . . . 5 + ⊆ ℝ
28 2cn 11254 . . . . 5 2 ∈ ℂ
29 o1const 14520 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3027, 28, 29mp2an 710 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
3130a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3227a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 1red 10218 . . . 4 (𝜑 → 1 ∈ ℝ)
34 dchrisum0lem2.e . . . . 5 (𝜑𝐸 ∈ (0[,)+∞))
35 elrege0 12442 . . . . . 6 (𝐸 ∈ (0[,)+∞) ↔ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
3635simplbi 478 . . . . 5 (𝐸 ∈ (0[,)+∞) → 𝐸 ∈ ℝ)
3734, 36syl 17 . . . 4 (𝜑𝐸 ∈ ℝ)
383, 25absmuld 14363 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
39 rprege0 12011 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
4039adantl 473 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
41 absid 14206 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
4240, 41syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘𝑥) = 𝑥)
4342oveq1d 6816 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4438, 43eqtrd 2782 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4544adantrr 755 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4625adantrr 755 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
4746subid1d 10544 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))
4819adantl 473 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
49 fveq2 6340 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
5049fveq2d 6344 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
51 id 22 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚𝑎 = 𝑚)
5250, 51oveq12d 6819 . . . . . . . . . . . . . 14 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
53 dchrisum0lem2.k . . . . . . . . . . . . . 14 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 ovex 6829 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑎)) / 𝑎) ∈ V
5552, 53, 54fvmpt3i 6437 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5648, 55syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5756adantlrr 759 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
58 rpregt0 12010 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5958ad2antrl 766 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
6059simpld 477 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
61 simprr 813 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
62 flge1nn 12787 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
6360, 61, 62syl2anc 696 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
64 nnuz 11887 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6563, 64syl6eleq 2837 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
6624adantlrr 759 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
6757, 65, 66fsumser 14631 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
68 rpvmasum.a . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
69 rpvmasum2.1 . . . . . . . . . . . . . 14 1 = (0g𝐺)
70 eldifsni 4454 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
7113, 70syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋1 )
72 dchrisum0lem2.t . . . . . . . . . . . . . 14 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
73 dchrisum0lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
746, 8, 68, 5, 7, 69, 14, 71, 53, 34, 72, 73, 9dchrvmaeq0 25363 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑊𝑇 = 0))
7512, 74mpbid 222 . . . . . . . . . . . 12 (𝜑𝑇 = 0)
7675adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 = 0)
7776eqcomd 2754 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 = 𝑇)
7867, 77oveq12d 6819 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7947, 78eqtr3d 2784 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
8079fveq2d 6344 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
81 1re 10202 . . . . . . . . . 10 1 ∈ ℝ
82 elicopnf 12433 . . . . . . . . . 10 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8460, 61, 83sylanbrc 701 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ (1[,)+∞))
8573adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
86 fveq2 6340 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (⌊‘𝑦) = (⌊‘𝑥))
8786fveq2d 6344 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
8887oveq1d 6816 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
8988fveq2d 6344 . . . . . . . . . 10 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
90 oveq2 6809 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐸 / 𝑦) = (𝐸 / 𝑥))
9189, 90breq12d 4805 . . . . . . . . 9 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
9291rspcv 3433 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
9384, 85, 92sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥))
9480, 93eqbrtrd 4814 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))
9546abscld 14345 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ)
9637adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐸 ∈ ℝ)
97 lemuldiv2 11067 . . . . . . 7 (((abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9895, 96, 59, 97syl3anc 1463 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9994, 98mpbird 247 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
10045, 99eqbrtrd 4814 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
10132, 26, 33, 37, 100elo1d 14437 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ 𝑂(1))
1021, 26, 31, 101o1mul2 14525 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1))
103 fzfid 12937 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
10421rpsqrtcld 14320 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
105104rpcnd 12038 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
106104rpne0d 12041 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
10718, 105, 106divcld 10964 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
108107adantr 472 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
109 elfznn 12534 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
110109adantl 473 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
111110nnrpd 12034 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
112111rpsqrtcld 14320 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
113112rpcnd 12038 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℂ)
114112rpne0d 12041 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ≠ 0)
115108, 113, 114divcld 10964 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
116103, 115fsumcl 14634 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1174, 116fsumcl 14634 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
118 mulcl 10183 . . . 4 ((2 ∈ ℂ ∧ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
11928, 26, 118sylancr 698 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
120 2re 11253 . . . . . . . . . 10 2 ∈ ℝ
121 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
122 2z 11572 . . . . . . . . . . . . . 14 2 ∈ ℤ
123 rpexpcl 13044 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
124121, 122, 123sylancl 697 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
125 rpdivcl 12020 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
126124, 20, 125syl2an 495 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
127126rpsqrtcld 14320 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ+)
128127rpred 12036 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ)
129 remulcl 10184 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
130120, 128, 129sylancr 698 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
131130recnd 10231 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℂ)
132107, 131mulcld 10223 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) ∈ ℂ)
1334, 116, 132fsumsub 14690 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
134112rpcnne0d 12045 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
135 reccl 10855 . . . . . . . . . . 11 (((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0) → (1 / (√‘𝑑)) ∈ ℂ)
136134, 135syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (1 / (√‘𝑑)) ∈ ℂ)
137103, 136fsumcl 14634 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) ∈ ℂ)
138107, 137, 131subdid 10649 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
139 fveq2 6340 . . . . . . . . . . . . . 14 (𝑦 = ((𝑥↑2) / 𝑚) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑚)))
140139oveq2d 6817 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (1...(⌊‘𝑦)) = (1...(⌊‘((𝑥↑2) / 𝑚))))
141140sumeq1d 14601 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)))
142 fveq2 6340 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑚)))
143142oveq2d 6817 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → (2 · (√‘𝑦)) = (2 · (√‘((𝑥↑2) / 𝑚))))
144141, 143oveq12d 6819 . . . . . . . . . . 11 (𝑦 = ((𝑥↑2) / 𝑚) → (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
145 dchrisum0lem2.h . . . . . . . . . . 11 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
146 ovex 6829 . . . . . . . . . . 11 𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) ∈ V
147144, 145, 146fvmpt3i 6437 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
148126, 147syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
149148oveq2d 6817 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))))
150108, 113, 114divrecd 10967 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
151150sumeq2dv 14603 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
152103, 107, 136fsummulc2 14686 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
153151, 152eqtr4d 2785 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))))
154153oveq1d 6816 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
155138, 149, 1543eqtr4d 2792 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
156155sumeq2dv 14603 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
157 mulcl 10183 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
15828, 3, 157sylancr 698 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝑥) ∈ ℂ)
1594, 158, 24fsummulc2 14686 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
1601, 3, 25mulassd 10226 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
161158adantr 472 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · 𝑥) ∈ ℂ)
162161, 107, 105, 106div12d 11000 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
163104rpcnne0d 12045 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
164 divdiv1 10899 . . . . . . . . . . . . 13 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16518, 163, 163, 164syl3anc 1463 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16621rprege0d 12043 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
167 remsqsqrt 14167 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
168166, 167syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
169168oveq2d 6817 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170165, 169eqtr2d 2783 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)))
171170oveq2d 6817 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))))
172124adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
173172rprege0d 12043 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
174 sqrtdiv 14176 . . . . . . . . . . . . . . 15 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
175173, 21, 174syl2anc 696 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
17639ad2antlr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
177 sqrtsq 14180 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
178176, 177syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
179178oveq1d 6816 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
180175, 179eqtrd 2782 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
181180oveq2d 6817 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = (2 · (𝑥 / (√‘𝑚))))
182 2cnd 11256 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1833adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
184 divass 10866 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
185182, 183, 163, 184syl3anc 1463 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
186181, 185eqtr4d 2785 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = ((2 · 𝑥) / (√‘𝑚)))
187186oveq2d 6817 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
188162, 171, 1873eqtr4d 2792 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
189188sumeq2dv 14603 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
190159, 160, 1893eqtr3d 2790 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
191190oveq2d 6817 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
192133, 156, 1913eqtr4d 2792 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))))
193192mpteq2dva 4884 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))))
194 dchrisum0lem1.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
195 dchrisum0.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
196 dchrisum0.s . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
197 dchrisum0.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
198 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
1996, 8, 68, 5, 7, 69, 9, 12, 194, 195, 196, 197, 145, 198dchrisum0lem2a 25376 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
200193, 199eqeltrrd 2828 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))) ∈ 𝑂(1))
201117, 119, 200o1dif 14530 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1)))
202102, 201mpbird 247 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wral 3038  {crab 3042  cdif 3700  wss 3703  {csn 4309   class class class wbr 4792  cmpt 4869  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104  +∞cpnf 10234   < clt 10237  cle 10238  cmin 10429   / cdiv 10847  cn 11183  2c2 11233  cz 11540  cuz 11850  +crp 11996  [,)cico 12341  ...cfz 12490  cfl 12756  seqcseq 12966  cexp 13025  csqrt 14143  abscabs 14144  cli 14385  𝑟 crli 14386  𝑂(1)co1 14387  Σcsu 14586  Basecbs 16030  0gc0g 16273  ℤRHomczrh 20021  ℤ/nczn 20024  DChrcdchr 25127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-disj 4761  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7899  df-ec 7901  df-qs 7905  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-acn 8929  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ioc 12344  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-fac 13226  df-bc 13255  df-hash 13283  df-shft 13977  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-limsup 14372  df-clim 14389  df-rlim 14390  df-o1 14391  df-lo1 14392  df-sum 14587  df-ef 14968  df-sin 14970  df-cos 14971  df-pi 14973  df-dvds 15154  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-qus 16342  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-mhm 17507  df-submnd 17508  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mulg 17713  df-subg 17763  df-nsg 17764  df-eqg 17765  df-ghm 17830  df-cntz 17921  df-od 18119  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-ring 18720  df-cring 18721  df-oppr 18794  df-dvdsr 18812  df-unit 18813  df-invr 18843  df-dvr 18854  df-rnghom 18888  df-drng 18922  df-subrg 18951  df-lmod 19038  df-lss 19106  df-lsp 19145  df-sra 19345  df-rgmod 19346  df-lidl 19347  df-rsp 19348  df-2idl 19405  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-fbas 19916  df-fg 19917  df-cnfld 19920  df-zring 19992  df-zrh 20025  df-zn 20028  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-ntr 20997  df-cls 20998  df-nei 21075  df-lp 21113  df-perf 21114  df-cn 21204  df-cnp 21205  df-haus 21292  df-cmp 21363  df-tx 21538  df-hmeo 21731  df-fil 21822  df-fm 21914  df-flim 21915  df-flf 21916  df-xms 22297  df-ms 22298  df-tms 22299  df-cncf 22853  df-limc 23800  df-dv 23801  df-log 24473  df-cxp 24474  df-dchr 25128
This theorem is referenced by:  dchrisum0lem3  25378
  Copyright terms: Public domain W3C validator