MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   GIF version

Theorem dchrinv 25185
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
dchrinv (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))

Proof of Theorem dchrinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
2 eqid 2760 . . . . . . . 8 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . . 8 𝐷 = (Base‘𝐺)
4 eqid 2760 . . . . . . . 8 (+g𝐺) = (+g𝐺)
5 dchrabs.x . . . . . . . 8 (𝜑𝑋𝐷)
6 cjf 14043 . . . . . . . . . 10 ∗:ℂ⟶ℂ
7 eqid 2760 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
81, 2, 3, 7, 5dchrf 25166 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 fco 6219 . . . . . . . . . 10 ((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
106, 8, 9sylancr 698 . . . . . . . . 9 (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
11 eqid 2760 . . . . . . . . . . . . . . . . . . . . 21 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
121, 3dchrrcl 25164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐷𝑁 ∈ ℕ)
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℕ)
141, 2, 7, 11, 13, 3dchrelbas3 25162 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
155, 14mpbid 222 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))))
1615simprd 482 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
1716simp1d 1137 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1817r19.21bi 3070 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1918r19.21bi 3070 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2019anasss 682 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2120fveq2d 6356 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋𝑥) · (𝑋𝑦))))
228adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
237, 11unitss 18860 . . . . . . . . . . . . . . . 16 (Unit‘(ℤ/nℤ‘𝑁)) ⊆ (Base‘(ℤ/nℤ‘𝑁))
24 simprl 811 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2523, 24sseldi 3742 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2622, 25ffvelrnd 6523 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑥) ∈ ℂ)
27 simprr 813 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2823, 27sseldi 3742 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2922, 28ffvelrnd 6523 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑦) ∈ ℂ)
3026, 29cjmuld 14160 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋𝑥) · (𝑋𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3121, 30eqtrd 2794 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3213nnnn0d 11543 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
332zncrng 20095 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
34 crngring 18758 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
3635adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (ℤ/nℤ‘𝑁) ∈ Ring)
37 eqid 2760 . . . . . . . . . . . . . . 15 (.r‘(ℤ/nℤ‘𝑁)) = (.r‘(ℤ/nℤ‘𝑁))
387, 37ringcl 18761 . . . . . . . . . . . . . 14 (((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3936, 25, 28, 38syl3anc 1477 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
40 fvco3 6437 . . . . . . . . . . . . 13 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
4122, 39, 40syl2anc 696 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
42 fvco3 6437 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
4322, 25, 42syl2anc 696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
44 fvco3 6437 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4522, 28, 44syl2anc 696 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4643, 45oveq12d 6831 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
4731, 41, 463eqtr4d 2804 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
4847ralrimivva 3109 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
49 eqid 2760 . . . . . . . . . . . . . 14 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
507, 49ringidcl 18768 . . . . . . . . . . . . 13 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
5135, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
52 fvco3 6437 . . . . . . . . . . . 12 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
538, 51, 52syl2anc 696 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
5416simp2d 1138 . . . . . . . . . . . . 13 (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
5554fveq2d 6356 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1))
56 1re 10231 . . . . . . . . . . . . 13 1 ∈ ℝ
57 cjre 14078 . . . . . . . . . . . . 13 (1 ∈ ℝ → (∗‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . 12 (∗‘1) = 1
5955, 58syl6eq 2810 . . . . . . . . . . 11 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1)
6053, 59eqtrd 2794 . . . . . . . . . 10 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
6116simp3d 1139 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
628, 42sylan 489 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
63 cj0 14097 . . . . . . . . . . . . . . . . . 18 (∗‘0) = 0
6463eqcomi 2769 . . . . . . . . . . . . . . . . 17 0 = (∗‘0)
6564a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 0 = (∗‘0))
6662, 65eqeq12d 2775 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋𝑥)) = (∗‘0)))
678ffvelrnda 6522 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
68 0cn 10224 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
69 cj11 14101 . . . . . . . . . . . . . . . 16 (((𝑋𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7067, 68, 69sylancl 697 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7166, 70bitrd 268 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋𝑥) = 0))
7271necon3bid 2976 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
7372imbi1d 330 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7473ralbidva 3123 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7561, 74mpbird 247 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
7648, 60, 753jca 1123 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
771, 2, 7, 11, 13, 3dchrelbas3 25162 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
7810, 76, 77mpbir2and 995 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
791, 2, 3, 4, 5, 78dchrmul 25172 . . . . . . 7 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋𝑓 · (∗ ∘ 𝑋)))
8079adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋𝑓 · (∗ ∘ 𝑋)))
8180fveq1d 6354 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑓 · (∗ ∘ 𝑋))‘𝑥))
8223sseli 3740 . . . . . . . . 9 (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
8382, 62sylan2 492 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
8483oveq2d 6829 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
8582, 67sylan2 492 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
8685absvalsqd 14380 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
875adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋𝐷)
88 simpr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
891, 3, 87, 2, 11, 88dchrabs 25184 . . . . . . . . 9 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋𝑥)) = 1)
9089oveq1d 6828 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = (1↑2))
91 sq1 13152 . . . . . . . 8 (1↑2) = 1
9290, 91syl6eq 2810 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = 1)
9384, 86, 923eqtr2d 2800 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1)
948adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
95 ffn 6206 . . . . . . . 8 (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
9694, 95syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
97 ffn 6206 . . . . . . . . 9 ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9810, 97syl 17 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9998adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
100 fvexd 6364 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
10182adantl 473 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
102 fnfvof 7076 . . . . . . 7 (((𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁))) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋𝑓 · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
10396, 99, 100, 101, 102syl22anc 1478 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑓 · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
104 eqid 2760 . . . . . . 7 (0g𝐺) = (0g𝐺)
10513adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
1061, 2, 104, 11, 105, 88dchr1 25181 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((0g𝐺)‘𝑥) = 1)
10793, 103, 1063eqtr4d 2804 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑓 · (∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
10881, 107eqtrd 2794 . . . 4 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
109108ralrimiva 3104 . . 3 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
1101, 2, 3, 4, 5, 78dchrmulcl 25173 . . . 4 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) ∈ 𝐷)
1111dchrabl 25178 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
112 ablgrp 18398 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
11313, 111, 1123syl 18 . . . . 5 (𝜑𝐺 ∈ Grp)
1143, 104grpidcl 17651 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
115113, 114syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
1161, 2, 3, 11, 110, 115dchreq 25182 . . 3 (𝜑 → ((𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺) ↔ ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥)))
117109, 116mpbird 247 . 2 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺))
118 dchrinv.i . . . 4 𝐼 = (invg𝐺)
1193, 4, 104, 118grpinvid1 17671 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
120113, 5, 78, 119syl3anc 1477 . 2 (𝜑 → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
121117, 120mpbird 247 1 (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  ccom 5270   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  𝑓 cof 7060  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  cn 11212  2c2 11262  0cn0 11484  cexp 13054  ccj 14035  abscabs 14173  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  0gc0g 16302  Grpcgrp 17623  invgcminusg 17624  Abelcabl 18394  1rcur 18701  Ringcrg 18747  CRingccrg 18748  Unitcui 18839  ℤ/nczn 20053  DChrcdchr 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-qus 16371  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cntz 17950  df-od 18148  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-sra 19374  df-rgmod 19375  df-lidl 19376  df-rsp 19377  df-2idl 19434  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-zn 20057  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503  df-dchr 25157
This theorem is referenced by:  dchr2sum  25197  dchrisum0re  25401
  Copyright terms: Public domain W3C validator