MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Visualization version   GIF version

Theorem dchrghm 25202
Description: A Dirichlet character restricted to the unit group of ℤ/n is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g 𝐺 = (DChr‘𝑁)
dchrghm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrghm.b 𝐷 = (Base‘𝐺)
dchrghm.u 𝑈 = (Unit‘𝑍)
dchrghm.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrghm.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
dchrghm.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrghm (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))

Proof of Theorem dchrghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrghm.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrghm.b . . . . . 6 𝐷 = (Base‘𝐺)
41, 2, 3dchrmhm 25187 . . . . 5 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
5 dchrghm.x . . . . 5 (𝜑𝑋𝐷)
64, 5sseldi 3750 . . . 4 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
71, 3dchrrcl 25186 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
85, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 11553 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
102zncrng 20108 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
12 crngring 18766 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
14 dchrghm.u . . . . . 6 𝑈 = (Unit‘𝑍)
15 eqid 2771 . . . . . 6 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1614, 15unitsubm 18878 . . . . 5 (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
1713, 16syl 17 . . . 4 (𝜑𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
18 dchrghm.h . . . . 5 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
1918resmhm 17567 . . . 4 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
206, 17, 19syl2anc 573 . . 3 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
21 cnring 19983 . . . . 5 fld ∈ Ring
22 cnfldbas 19965 . . . . . . 7 ℂ = (Base‘ℂfld)
23 cnfld0 19985 . . . . . . 7 0 = (0g‘ℂfld)
24 cndrng 19990 . . . . . . 7 fld ∈ DivRing
2522, 23, 24drngui 18963 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
26 eqid 2771 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2725, 26unitsubm 18878 . . . . 5 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2821, 27ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
29 df-ima 5262 . . . . 5 (𝑋𝑈) = ran (𝑋𝑈)
30 eqid 2771 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
311, 2, 3, 30, 5dchrf 25188 . . . . . . . . 9 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
3230, 14unitss 18868 . . . . . . . . . 10 𝑈 ⊆ (Base‘𝑍)
3332sseli 3748 . . . . . . . . 9 (𝑥𝑈𝑥 ∈ (Base‘𝑍))
34 ffvelrn 6500 . . . . . . . . 9 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
3531, 33, 34syl2an 583 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ ℂ)
36 simpr 471 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝑥𝑈)
375adantr 466 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑋𝐷)
3833adantl 467 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑥 ∈ (Base‘𝑍))
391, 2, 3, 30, 14, 37, 38dchrn0 25196 . . . . . . . . 9 ((𝜑𝑥𝑈) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
4036, 39mpbird 247 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ≠ 0)
41 eldifsn 4453 . . . . . . . 8 ((𝑋𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝑥) ∈ ℂ ∧ (𝑋𝑥) ≠ 0))
4235, 40, 41sylanbrc 572 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ (ℂ ∖ {0}))
4342ralrimiva 3115 . . . . . 6 (𝜑 → ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0}))
44 ffun 6188 . . . . . . . 8 (𝑋:(Base‘𝑍)⟶ℂ → Fun 𝑋)
4531, 44syl 17 . . . . . . 7 (𝜑 → Fun 𝑋)
46 fdm 6191 . . . . . . . . 9 (𝑋:(Base‘𝑍)⟶ℂ → dom 𝑋 = (Base‘𝑍))
4731, 46syl 17 . . . . . . . 8 (𝜑 → dom 𝑋 = (Base‘𝑍))
4832, 47syl5sseqr 3803 . . . . . . 7 (𝜑𝑈 ⊆ dom 𝑋)
49 funimass4 6389 . . . . . . 7 ((Fun 𝑋𝑈 ⊆ dom 𝑋) → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
5045, 48, 49syl2anc 573 . . . . . 6 (𝜑 → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
5143, 50mpbird 247 . . . . 5 (𝜑 → (𝑋𝑈) ⊆ (ℂ ∖ {0}))
5229, 51syl5eqssr 3799 . . . 4 (𝜑 → ran (𝑋𝑈) ⊆ (ℂ ∖ {0}))
53 dchrghm.m . . . . 5 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5453resmhm2b 17569 . . . 4 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5528, 52, 54sylancr 575 . . 3 (𝜑 → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5620, 55mpbid 222 . 2 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom 𝑀))
5714, 18unitgrp 18875 . . . 4 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5813, 57syl 17 . . 3 (𝜑𝐻 ∈ Grp)
5953cnmgpabl 20022 . . . 4 𝑀 ∈ Abel
60 ablgrp 18405 . . . 4 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
6159, 60ax-mp 5 . . 3 𝑀 ∈ Grp
62 ghmmhmb 17879 . . 3 ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6358, 61, 62sylancl 574 . 2 (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6456, 63eleqtrrd 2853 1 (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  cdif 3720  wss 3723  {csn 4316  dom cdm 5249  ran crn 5250  cres 5251  cima 5252  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  cn 11222  0cn0 11494  Basecbs 16064  s cress 16065   MndHom cmhm 17541  SubMndcsubmnd 17542  Grpcgrp 17630   GrpHom cghm 17865  Abelcabl 18401  mulGrpcmgp 18697  Ringcrg 18755  CRingccrg 18756  Unitcui 18847  fldccnfld 19961  ℤ/nczn 20066  DChrcdchr 25178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-ec 7898  df-qs 7902  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-imas 16376  df-qus 16377  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-nsg 17800  df-eqg 17801  df-ghm 17866  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-drng 18959  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rsp 19390  df-2idl 19447  df-cnfld 19962  df-zring 20034  df-zn 20070  df-dchr 25179
This theorem is referenced by:  dchrabs  25206  sum2dchr  25220
  Copyright terms: Public domain W3C validator