![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrghm | Structured version Visualization version GIF version |
Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
dchrghm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrghm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrghm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrghm.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrghm.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
dchrghm.m | ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) |
dchrghm.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrghm | ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrghm.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrghm.z | . . . . . 6 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrghm.b | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
4 | 1, 2, 3 | dchrmhm 25187 | . . . . 5 ⊢ 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) |
5 | dchrghm.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
6 | 4, 5 | sseldi 3750 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) |
7 | 1, 3 | dchrrcl 25186 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
9 | 8 | nnnn0d 11553 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
10 | 2 | zncrng 20108 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ CRing) |
12 | crngring 18766 | . . . . . 6 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Ring) |
14 | dchrghm.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑍) | |
15 | eqid 2771 | . . . . . 6 ⊢ (mulGrp‘𝑍) = (mulGrp‘𝑍) | |
16 | 14, 15 | unitsubm 18878 | . . . . 5 ⊢ (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) |
18 | dchrghm.h | . . . . 5 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
19 | 18 | resmhm 17567 | . . . 4 ⊢ ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
20 | 6, 17, 19 | syl2anc 573 | . . 3 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld))) |
21 | cnring 19983 | . . . . 5 ⊢ ℂfld ∈ Ring | |
22 | cnfldbas 19965 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
23 | cnfld0 19985 | . . . . . . 7 ⊢ 0 = (0g‘ℂfld) | |
24 | cndrng 19990 | . . . . . . 7 ⊢ ℂfld ∈ DivRing | |
25 | 22, 23, 24 | drngui 18963 | . . . . . 6 ⊢ (ℂ ∖ {0}) = (Unit‘ℂfld) |
26 | eqid 2771 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
27 | 25, 26 | unitsubm 18878 | . . . . 5 ⊢ (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))) |
28 | 21, 27 | ax-mp 5 | . . . 4 ⊢ (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) |
29 | df-ima 5262 | . . . . 5 ⊢ (𝑋 “ 𝑈) = ran (𝑋 ↾ 𝑈) | |
30 | eqid 2771 | . . . . . . . . . 10 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
31 | 1, 2, 3, 30, 5 | dchrf 25188 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℂ) |
32 | 30, 14 | unitss 18868 | . . . . . . . . . 10 ⊢ 𝑈 ⊆ (Base‘𝑍) |
33 | 32 | sseli 3748 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑍)) |
34 | ffvelrn 6500 | . . . . . . . . 9 ⊢ ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋‘𝑥) ∈ ℂ) | |
35 | 31, 33, 34 | syl2an 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ ℂ) |
36 | simpr 471 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
37 | 5 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑋 ∈ 𝐷) |
38 | 33 | adantl 467 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑍)) |
39 | 1, 2, 3, 30, 14, 37, 38 | dchrn0 25196 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → ((𝑋‘𝑥) ≠ 0 ↔ 𝑥 ∈ 𝑈)) |
40 | 36, 39 | mpbird 247 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ≠ 0) |
41 | eldifsn 4453 | . . . . . . . 8 ⊢ ((𝑋‘𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋‘𝑥) ∈ ℂ ∧ (𝑋‘𝑥) ≠ 0)) | |
42 | 35, 40, 41 | sylanbrc 572 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
43 | 42 | ralrimiva 3115 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0})) |
44 | ffun 6188 | . . . . . . . 8 ⊢ (𝑋:(Base‘𝑍)⟶ℂ → Fun 𝑋) | |
45 | 31, 44 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Fun 𝑋) |
46 | fdm 6191 | . . . . . . . . 9 ⊢ (𝑋:(Base‘𝑍)⟶ℂ → dom 𝑋 = (Base‘𝑍)) | |
47 | 31, 46 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom 𝑋 = (Base‘𝑍)) |
48 | 32, 47 | syl5sseqr 3803 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ⊆ dom 𝑋) |
49 | funimass4 6389 | . . . . . . 7 ⊢ ((Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋) → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) | |
50 | 45, 48, 49 | syl2anc 573 | . . . . . 6 ⊢ (𝜑 → ((𝑋 “ 𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥 ∈ 𝑈 (𝑋‘𝑥) ∈ (ℂ ∖ {0}))) |
51 | 43, 50 | mpbird 247 | . . . . 5 ⊢ (𝜑 → (𝑋 “ 𝑈) ⊆ (ℂ ∖ {0})) |
52 | 29, 51 | syl5eqssr 3799 | . . . 4 ⊢ (𝜑 → ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) |
53 | dchrghm.m | . . . . 5 ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
54 | 53 | resmhm2b 17569 | . . . 4 ⊢ (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋 ↾ 𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
55 | 28, 52, 54 | sylancr 575 | . . 3 ⊢ (𝜑 → ((𝑋 ↾ 𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀))) |
56 | 20, 55 | mpbid 222 | . 2 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 MndHom 𝑀)) |
57 | 14, 18 | unitgrp 18875 | . . . 4 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
58 | 13, 57 | syl 17 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Grp) |
59 | 53 | cnmgpabl 20022 | . . . 4 ⊢ 𝑀 ∈ Abel |
60 | ablgrp 18405 | . . . 4 ⊢ (𝑀 ∈ Abel → 𝑀 ∈ Grp) | |
61 | 59, 60 | ax-mp 5 | . . 3 ⊢ 𝑀 ∈ Grp |
62 | ghmmhmb 17879 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) | |
63 | 58, 61, 62 | sylancl 574 | . 2 ⊢ (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀)) |
64 | 56, 63 | eleqtrrd 2853 | 1 ⊢ (𝜑 → (𝑋 ↾ 𝑈) ∈ (𝐻 GrpHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 dom cdm 5249 ran crn 5250 ↾ cres 5251 “ cima 5252 Fun wfun 6025 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 ℕcn 11222 ℕ0cn0 11494 Basecbs 16064 ↾s cress 16065 MndHom cmhm 17541 SubMndcsubmnd 17542 Grpcgrp 17630 GrpHom cghm 17865 Abelcabl 18401 mulGrpcmgp 18697 Ringcrg 18755 CRingccrg 18756 Unitcui 18847 ℂfldccnfld 19961 ℤ/nℤczn 20066 DChrcdchr 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-imas 16376 df-qus 16377 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-nsg 17800 df-eqg 17801 df-ghm 17866 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-subrg 18988 df-lmod 19075 df-lss 19143 df-lsp 19185 df-sra 19387 df-rgmod 19388 df-lidl 19389 df-rsp 19390 df-2idl 19447 df-cnfld 19962 df-zring 20034 df-zn 20070 df-dchr 25179 |
This theorem is referenced by: dchrabs 25206 sum2dchr 25220 |
Copyright terms: Public domain | W3C validator |