MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchreq Structured version   Visualization version   GIF version

Theorem dchreq 25203
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g 𝐺 = (DChr‘𝑁)
dchrresb.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrresb.b 𝐷 = (Base‘𝐺)
dchrresb.u 𝑈 = (Unit‘𝑍)
dchrresb.x (𝜑𝑋𝐷)
dchrresb.Y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchreq (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Distinct variable groups:   𝜑,𝑘   𝑈,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   𝐺(𝑘)   𝑁(𝑘)

Proof of Theorem dchreq
StepHypRef Expression
1 dchrresb.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrresb.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrresb.b . . . . . 6 𝐷 = (Base‘𝐺)
4 eqid 2770 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
5 dchrresb.x . . . . . 6 (𝜑𝑋𝐷)
61, 2, 3, 4, 5dchrf 25187 . . . . 5 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
7 ffn 6185 . . . . 5 (𝑋:(Base‘𝑍)⟶ℂ → 𝑋 Fn (Base‘𝑍))
86, 7syl 17 . . . 4 (𝜑𝑋 Fn (Base‘𝑍))
9 dchrresb.Y . . . . . 6 (𝜑𝑌𝐷)
101, 2, 3, 4, 9dchrf 25187 . . . . 5 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
11 ffn 6185 . . . . 5 (𝑌:(Base‘𝑍)⟶ℂ → 𝑌 Fn (Base‘𝑍))
1210, 11syl 17 . . . 4 (𝜑𝑌 Fn (Base‘𝑍))
13 eqfnfv 6454 . . . 4 ((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
148, 12, 13syl2anc 565 . . 3 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘)))
15 dchrresb.u . . . . . . 7 𝑈 = (Unit‘𝑍)
164, 15unitss 18867 . . . . . 6 𝑈 ⊆ (Base‘𝑍)
17 undif 4189 . . . . . 6 (𝑈 ⊆ (Base‘𝑍) ↔ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍))
1816, 17mpbi 220 . . . . 5 (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈)) = (Base‘𝑍)
1918raleqi 3290 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ ∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘))
20 ralunb 3943 . . . 4 (∀𝑘 ∈ (𝑈 ∪ ((Base‘𝑍) ∖ 𝑈))(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
2119, 20bitr3i 266 . . 3 (∀𝑘 ∈ (Base‘𝑍)(𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘)))
2214, 21syl6bb 276 . 2 (𝜑 → (𝑋 = 𝑌 ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))))
23 eldif 3731 . . . . . 6 (𝑘 ∈ ((Base‘𝑍) ∖ 𝑈) ↔ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈))
245adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑋𝐷)
25 simpr 471 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑘 ∈ (Base‘𝑍))
261, 2, 3, 4, 15, 24, 25dchrn0 25195 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2726biimpd 219 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2827necon1bd 2960 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2928impr 442 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑋𝑘) = 0)
3023, 29sylan2b 573 . . . . 5 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = 0)
319adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (Base‘𝑍)) → 𝑌𝐷)
321, 2, 3, 4, 15, 31, 25dchrn0 25195 . . . . . . . . 9 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 ↔ 𝑘𝑈))
3332biimpd 219 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘𝑍)) → ((𝑌𝑘) ≠ 0 → 𝑘𝑈))
3433necon1bd 2960 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘𝑍)) → (¬ 𝑘𝑈 → (𝑌𝑘) = 0))
3534impr 442 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑍) ∧ ¬ 𝑘𝑈)) → (𝑌𝑘) = 0)
3623, 35sylan2b 573 . . . . 5 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑌𝑘) = 0)
3730, 36eqtr4d 2807 . . . 4 ((𝜑𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)) → (𝑋𝑘) = (𝑌𝑘))
3837ralrimiva 3114 . . 3 (𝜑 → ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))
3938biantrud 515 . 2 (𝜑 → (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ↔ (∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘) ∧ ∀𝑘 ∈ ((Base‘𝑍) ∖ 𝑈)(𝑋𝑘) = (𝑌𝑘))))
4022, 39bitr4d 271 1 (𝜑 → (𝑋 = 𝑌 ↔ ∀𝑘𝑈 (𝑋𝑘) = (𝑌𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  cdif 3718  cun 3719  wss 3721   Fn wfn 6026  wf 6027  cfv 6031  cc 10135  0cc0 10137  Basecbs 16063  Unitcui 18846  ℤ/nczn 20065  DChrcdchr 25177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-imas 16375  df-qus 16376  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-nsg 17799  df-eqg 17800  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-subrg 18987  df-lmod 19074  df-lss 19142  df-lsp 19184  df-sra 19386  df-rgmod 19387  df-lidl 19388  df-rsp 19389  df-2idl 19446  df-cnfld 19961  df-zring 20033  df-zn 20069  df-dchr 25178
This theorem is referenced by:  dchrresb  25204  dchrinv  25206  dchrsum2  25213
  Copyright terms: Public domain W3C validator