MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbasd Structured version   Visualization version   GIF version

Theorem dchrelbasd 24898
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
dchrelbasd.1 (𝑘 = 𝑥𝑋 = 𝐴)
dchrelbasd.2 (𝑘 = 𝑦𝑋 = 𝐶)
dchrelbasd.3 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
dchrelbasd.4 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
dchrelbasd.5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
dchrelbasd.6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
dchrelbasd.7 (𝜑𝑌 = 1)
Assertion
Ref Expression
dchrelbasd (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑦,𝐵   𝑥,𝑁   𝑈,𝑘,𝑥,𝑦   𝐶,𝑘   𝑘,𝐸   𝜑,𝑘,𝑥,𝑦   𝑥,𝑋,𝑦   𝑘,𝑍,𝑥,𝑦   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑘)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑘)   𝑁(𝑦,𝑘)   𝑋(𝑘)   𝑌(𝑥,𝑦)

Proof of Theorem dchrelbasd
StepHypRef Expression
1 dchrelbasd.5 . . . . 5 ((𝜑𝑘𝑈) → 𝑋 ∈ ℂ)
21adantlr 750 . . . 4 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → 𝑋 ∈ ℂ)
3 0cnd 9993 . . . 4 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → 0 ∈ ℂ)
42, 3ifclda 4098 . . 3 ((𝜑𝑘𝐵) → if(𝑘𝑈, 𝑋, 0) ∈ ℂ)
5 eqid 2621 . . 3 (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) = (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))
64, 5fmptd 6351 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ)
7 dchrval.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
87nnnn0d 11311 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
9 dchrval.z . . . . . . . . . 10 𝑍 = (ℤ/nℤ‘𝑁)
109zncrng 19833 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
11 crngring 18498 . . . . . . . . 9 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
128, 10, 113syl 18 . . . . . . . 8 (𝜑𝑍 ∈ Ring)
13 dchrval.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
14 eqid 2621 . . . . . . . . . 10 (.r𝑍) = (.r𝑍)
1513, 14unitmulcl 18604 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ 𝑥𝑈𝑦𝑈) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
16153expb 1263 . . . . . . . 8 ((𝑍 ∈ Ring ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1712, 16sylan 488 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝑈)
1817iftrued 4072 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = 𝐸)
19 dchrelbasd.6 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 = (𝐴 · 𝐶))
2018, 19eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) = (𝐴 · 𝐶))
21 dchrval.b . . . . . . . 8 𝐵 = (Base‘𝑍)
2221, 13unitss 18600 . . . . . . 7 𝑈𝐵
2322, 17sseldi 3586 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
241ralrimiva 2962 . . . . . . . . 9 (𝜑 → ∀𝑘𝑈 𝑋 ∈ ℂ)
2524adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ∀𝑘𝑈 𝑋 ∈ ℂ)
26 dchrelbasd.3 . . . . . . . . . 10 (𝑘 = (𝑥(.r𝑍)𝑦) → 𝑋 = 𝐸)
2726eleq1d 2683 . . . . . . . . 9 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋 ∈ ℂ ↔ 𝐸 ∈ ℂ))
2827rspcv 3295 . . . . . . . 8 ((𝑥(.r𝑍)𝑦) ∈ 𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐸 ∈ ℂ))
2917, 25, 28sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐸 ∈ ℂ)
3018, 29eqeltrd 2698 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ)
31 eleq1 2686 . . . . . . . 8 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑘𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
3231, 26ifbieq1d 4087 . . . . . . 7 (𝑘 = (𝑥(.r𝑍)𝑦) → if(𝑘𝑈, 𝑋, 0) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
3332, 5fvmptg 6247 . . . . . 6 (((𝑥(.r𝑍)𝑦) ∈ 𝐵 ∧ if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0) ∈ ℂ) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
3423, 30, 33syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = if((𝑥(.r𝑍)𝑦) ∈ 𝑈, 𝐸, 0))
35 simprl 793 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3622, 35sseldi 3586 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 iftrue 4070 . . . . . . . . . 10 (𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 𝐴)
3837ad2antrl 763 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) = 𝐴)
39 dchrelbasd.1 . . . . . . . . . . . 12 (𝑘 = 𝑥𝑋 = 𝐴)
4039eleq1d 2683 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑋 ∈ ℂ ↔ 𝐴 ∈ ℂ))
4140rspcv 3295 . . . . . . . . . 10 (𝑥𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐴 ∈ ℂ))
4235, 25, 41sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐴 ∈ ℂ)
4338, 42eqeltrd 2698 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
44 eleq1 2686 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
4544, 39ifbieq1d 4087 . . . . . . . . 9 (𝑘 = 𝑥 → if(𝑘𝑈, 𝑋, 0) = if(𝑥𝑈, 𝐴, 0))
4645, 5fvmptg 6247 . . . . . . . 8 ((𝑥𝐵 ∧ if(𝑥𝑈, 𝐴, 0) ∈ ℂ) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4736, 43, 46syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
4847, 38eqtrd 2655 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = 𝐴)
49 simprr 795 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
5022, 49sseldi 3586 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
51 iftrue 4070 . . . . . . . . . 10 (𝑦𝑈 → if(𝑦𝑈, 𝐶, 0) = 𝐶)
5251ad2antll 764 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) = 𝐶)
53 dchrelbasd.2 . . . . . . . . . . . 12 (𝑘 = 𝑦𝑋 = 𝐶)
5453eleq1d 2683 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑋 ∈ ℂ ↔ 𝐶 ∈ ℂ))
5554rspcv 3295 . . . . . . . . . 10 (𝑦𝑈 → (∀𝑘𝑈 𝑋 ∈ ℂ → 𝐶 ∈ ℂ))
5649, 25, 55sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝐶 ∈ ℂ)
5752, 56eqeltrd 2698 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → if(𝑦𝑈, 𝐶, 0) ∈ ℂ)
58 eleq1 2686 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
5958, 53ifbieq1d 4087 . . . . . . . . 9 (𝑘 = 𝑦 → if(𝑘𝑈, 𝑋, 0) = if(𝑦𝑈, 𝐶, 0))
6059, 5fvmptg 6247 . . . . . . . 8 ((𝑦𝐵 ∧ if(𝑦𝑈, 𝐶, 0) ∈ ℂ) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
6150, 57, 60syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = if(𝑦𝑈, 𝐶, 0))
6261, 52eqtrd 2655 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦) = 𝐶)
6348, 62oveq12d 6633 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) = (𝐴 · 𝐶))
6420, 34, 633eqtr4d 2665 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
6564ralrimivva 2967 . . 3 (𝜑 → ∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)))
66 eqid 2621 . . . . . . . 8 (1r𝑍) = (1r𝑍)
6713, 661unit 18598 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ 𝑈)
6812, 67syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ 𝑈)
6922, 68sseldi 3586 . . . . 5 (𝜑 → (1r𝑍) ∈ 𝐵)
7068iftrued 4072 . . . . . . 7 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 𝑌)
71 dchrelbasd.7 . . . . . . 7 (𝜑𝑌 = 1)
7270, 71eqtrd 2655 . . . . . 6 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) = 1)
73 ax-1cn 9954 . . . . . 6 1 ∈ ℂ
7472, 73syl6eqel 2706 . . . . 5 (𝜑 → if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ)
75 eleq1 2686 . . . . . . 7 (𝑘 = (1r𝑍) → (𝑘𝑈 ↔ (1r𝑍) ∈ 𝑈))
76 dchrelbasd.4 . . . . . . 7 (𝑘 = (1r𝑍) → 𝑋 = 𝑌)
7775, 76ifbieq1d 4087 . . . . . 6 (𝑘 = (1r𝑍) → if(𝑘𝑈, 𝑋, 0) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7877, 5fvmptg 6247 . . . . 5 (((1r𝑍) ∈ 𝐵 ∧ if((1r𝑍) ∈ 𝑈, 𝑌, 0) ∈ ℂ) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
7969, 74, 78syl2anc 692 . . . 4 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = if((1r𝑍) ∈ 𝑈, 𝑌, 0))
8079, 72eqtrd 2655 . . 3 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1)
81 simpr 477 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
8224, 41mpan9 486 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝐴 ∈ ℂ)
8382adantlr 750 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑥𝑈) → 𝐴 ∈ ℂ)
84 0cnd 9993 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ ¬ 𝑥𝑈) → 0 ∈ ℂ)
8583, 84ifclda 4098 . . . . . . 7 ((𝜑𝑥𝐵) → if(𝑥𝑈, 𝐴, 0) ∈ ℂ)
8681, 85, 46syl2anc 692 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) = if(𝑥𝑈, 𝐴, 0))
8786neeq1d 2849 . . . . 5 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 ↔ if(𝑥𝑈, 𝐴, 0) ≠ 0))
88 iffalse 4073 . . . . . 6 𝑥𝑈 → if(𝑥𝑈, 𝐴, 0) = 0)
8988necon1ai 2817 . . . . 5 (if(𝑥𝑈, 𝐴, 0) ≠ 0 → 𝑥𝑈)
9087, 89syl6bi 243 . . . 4 ((𝜑𝑥𝐵) → (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
9190ralrimiva 2962 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈))
9265, 80, 913jca 1240 . 2 (𝜑 → (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))
93 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
94 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
9593, 9, 21, 13, 7, 94dchrelbas3 24897 . 2 (𝜑 → ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷 ↔ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)):𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(𝑥(.r𝑍)𝑦)) = (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) · ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑦)) ∧ ((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 (((𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0))‘𝑥) ≠ 0 → 𝑥𝑈)))))
966, 92, 95mpbir2and 956 1 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 𝑋, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2908  ifcif 4064  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  cc 9894  0cc0 9896  1c1 9897   · cmul 9901  cn 10980  0cn0 11252  Basecbs 15800  .rcmulr 15882  1rcur 18441  Ringcrg 18487  CRingccrg 18488  Unitcui 18579  ℤ/nczn 19791  DChrcdchr 24891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-nsg 17532  df-eqg 17533  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-cnfld 19687  df-zring 19759  df-zn 19795  df-dchr 24892
This theorem is referenced by:  dchr1cl  24910  dchrinvcl  24912  dchrptlem2  24924
  Copyright terms: Public domain W3C validator