Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   GIF version

Theorem dchrelbas3 25183
 Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of ℂ, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas3 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑁   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑦)

Proof of Theorem dchrelbas3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas2 25182 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
8 fveq2 6332 . . . . . . . 8 (𝑧 = 𝑥 → (𝑋𝑧) = (𝑋𝑥))
98neeq1d 3001 . . . . . . 7 (𝑧 = 𝑥 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
10 eleq1 2837 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑈𝑥𝑈))
119, 10imbi12d 333 . . . . . 6 (𝑧 = 𝑥 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1211cbvralv 3319 . . . . 5 (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
135nnnn0d 11552 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
142zncrng 20107 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
16 crngring 18765 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
18 eqid 2770 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1918ringmgp 18760 . . . . . . . . 9 (𝑍 ∈ Ring → (mulGrp‘𝑍) ∈ Mnd)
2017, 19syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑍) ∈ Mnd)
21 cnring 19982 . . . . . . . . 9 fld ∈ Ring
22 eqid 2770 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 18760 . . . . . . . . 9 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2421, 23ax-mp 5 . . . . . . . 8 (mulGrp‘ℂfld) ∈ Mnd
2518, 3mgpbas 18702 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑍))
26 cnfldbas 19964 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
2722, 26mgpbas 18702 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
28 eqid 2770 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
2918, 28mgpplusg 18700 . . . . . . . . . 10 (.r𝑍) = (+g‘(mulGrp‘𝑍))
30 cnfldmul 19966 . . . . . . . . . . 11 · = (.r‘ℂfld)
3122, 30mgpplusg 18700 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
32 eqid 2770 . . . . . . . . . . 11 (1r𝑍) = (1r𝑍)
3318, 32ringidval 18710 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
34 cnfld1 19985 . . . . . . . . . . 11 1 = (1r‘ℂfld)
3522, 34ringidval 18710 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
3625, 27, 29, 31, 33, 35ismhm 17544 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) ∧ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3736baib 517 . . . . . . . 8 (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3820, 24, 37sylancl 566 . . . . . . 7 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3938adantr 466 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
40 biimt 349 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4140adantl 467 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
42 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑋𝑧) = (𝑋‘(𝑥(.r𝑍)𝑦)))
4342neeq1d 3001 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → ((𝑋𝑧) ≠ 0 ↔ (𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0))
44 eleq1 2837 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑧𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
4543, 44imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥(.r𝑍)𝑦) → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
46 simpllr 752 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈))
4717ad3antrrr 701 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ Ring)
48 simprl 746 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
49 simprr 748 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
503, 28ringcl 18768 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5147, 48, 49, 50syl3anc 1475 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5245, 46, 51rspcdva 3464 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5315ad3antrrr 701 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ CRing)
544, 28, 3unitmulclb 18872 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ CRing ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5553, 48, 49, 54syl3anc 1475 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5652, 55sylibd 229 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥𝑈𝑦𝑈)))
5756necon1bd 2960 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0))
5857imp 393 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0)
5911, 46, 48rspcdva 3464 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
60 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
6160neeq1d 3001 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
62 eleq1 2837 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑧𝑈𝑦𝑈))
6361, 62imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6463, 46, 49rspcdva 3464 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈))
6559, 64anim12d 588 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) → (𝑥𝑈𝑦𝑈)))
6665con3dimp 395 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
67 neanior 3034 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) ↔ ¬ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
6867con2bii 346 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0) ↔ ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
6966, 68sylibr 224 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
70 simplr 744 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋:𝐵⟶ℂ)
7170, 48ffvelrnd 6503 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑥) ∈ ℂ)
7270, 49ffvelrnd 6503 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑦) ∈ ℂ)
7371, 72mul0ord 10878 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7473adantr 466 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7569, 74mpbird 247 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) · (𝑋𝑦)) = 0)
7658, 75eqtr4d 2807 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776a1d 25 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7876, 772thd 255 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
7941, 78pm2.61dan 796 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8079pm5.74da 817 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))))
813, 4unitcl 18866 . . . . . . . . . . . . . . . 16 (𝑥𝑈𝑥𝐵)
823, 4unitcl 18866 . . . . . . . . . . . . . . . 16 (𝑦𝑈𝑦𝐵)
8381, 82anim12i 592 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → (𝑥𝐵𝑦𝐵))
8483pm4.71ri 542 . . . . . . . . . . . . . 14 ((𝑥𝑈𝑦𝑈) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)))
8584imbi1i 338 . . . . . . . . . . . . 13 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
86 impexp 437 . . . . . . . . . . . . 13 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8785, 86bitri 264 . . . . . . . . . . . 12 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8880, 87syl6bbr 278 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
89882albidv 2002 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
90 r2al 3087 . . . . . . . . . 10 (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
91 r2al 3087 . . . . . . . . . 10 (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9289, 90, 913bitr4g 303 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9392adantrr 688 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ (𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1)) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9493pm5.32da 560 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
95 3anan32 1081 . . . . . . 7 ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
96 an31 619 . . . . . . 7 (((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9794, 95, 963bitr4g 303 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9839, 97bitrd 268 . . . . 5 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9912, 98sylan2br 574 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10099pm5.32da 560 . . 3 (𝜑 → ((∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ))))
101 ancom 452 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))))
102 df-3an 1072 . . . . 5 ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
103102anbi2i 601 . . . 4 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
104 an13 618 . . . 4 ((𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
105103, 104bitri 264 . . 3 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
106100, 101, 1053bitr4g 303 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
1077, 106bitrd 268 1 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 826   ∧ w3a 1070  ∀wal 1628   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  ℂcc 10135  0cc0 10137  1c1 10138   · cmul 10142  ℕcn 11221  ℕ0cn0 11493  Basecbs 16063  .rcmulr 16149  Mndcmnd 17501   MndHom cmhm 17540  mulGrpcmgp 18696  1rcur 18708  Ringcrg 18754  CRingccrg 18755  Unitcui 18846  ℂfldccnfld 19960  ℤ/nℤczn 20065  DChrcdchr 25177 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-ec 7897  df-qs 7901  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-imas 16375  df-qus 16376  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-nsg 17799  df-eqg 17800  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-subrg 18987  df-lmod 19074  df-lss 19142  df-lsp 19184  df-sra 19386  df-rgmod 19387  df-lidl 19388  df-rsp 19389  df-2idl 19446  df-cnfld 19961  df-zring 20033  df-zn 20069  df-dchr 25178 This theorem is referenced by:  dchrelbasd  25184  dchrf  25187  dchrmulcl  25194  dchrinv  25206  lgsdchr  25300
 Copyright terms: Public domain W3C validator