MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrbas Structured version   Visualization version   GIF version

Theorem dchrbas 25180
Description: Base set of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrbas (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrbas
StepHypRef Expression
1 dchrval.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrval.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . . 4 𝐵 = (Base‘𝑍)
4 dchrval.u . . . 4 𝑈 = (Unit‘𝑍)
5 dchrval.n . . . 4 (𝜑𝑁 ∈ ℕ)
6 eqidd 2771 . . . 4 (𝜑 → {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
71, 2, 3, 4, 5, 6dchrval 25179 . . 3 (𝜑𝐺 = {⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩})
87fveq2d 6336 . 2 (𝜑 → (Base‘𝐺) = (Base‘{⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩}))
9 dchrbas.b . 2 𝐷 = (Base‘𝐺)
10 ovex 6822 . . . 4 ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∈ V
1110rabex 4943 . . 3 {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} ∈ V
12 eqid 2770 . . . 4 {⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩} = {⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩}
1312grpbase 16198 . . 3 ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} ∈ V → {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} = (Base‘{⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩}))
1411, 13ax-mp 5 . 2 {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} = (Base‘{⟨(Base‘ndx), {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ ({𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥} × {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥}))⟩})
158, 9, 143eqtr4g 2829 1 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  cdif 3718  wss 3721  {csn 4314  {cpr 4316  cop 4320   × cxp 5247  cres 5251  cfv 6031  (class class class)co 6792  𝑓 cof 7041  0cc0 10137   · cmul 10142  cn 11221  ndxcnx 16060  Basecbs 16063  +gcplusg 16148   MndHom cmhm 17540  mulGrpcmgp 18696  Unitcui 18846  fldccnfld 19960  ℤ/nczn 20065  DChrcdchr 25177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-dchr 25178
This theorem is referenced by:  dchrelbas  25181  dchrplusg  25192
  Copyright terms: Public domain W3C validator