Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Structured version   Visualization version   GIF version

Theorem dchrabl 25200
 Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
Assertion
Ref Expression
dchrabl (𝑁 ∈ ℕ → 𝐺 ∈ Abel)

Proof of Theorem dchrabl
Dummy variables 𝑥 𝑎 𝑏 𝑐 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2762 . 2 (𝑁 ∈ ℕ → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2762 . 2 (𝑁 ∈ ℕ → (+g𝐺) = (+g𝐺))
3 dchrabl.g . . . 4 𝐺 = (DChr‘𝑁)
4 eqid 2761 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
5 eqid 2761 . . . 4 (Base‘𝐺) = (Base‘𝐺)
6 eqid 2761 . . . 4 (+g𝐺) = (+g𝐺)
7 simp2 1132 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
8 simp3 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
93, 4, 5, 6, 7, 8dchrmulcl 25195 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
10 fvexd 6366 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
11 eqid 2761 . . . . . . . 8 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
123, 4, 5, 11, 7dchrf 25188 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
13123adant3r3 1200 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
143, 4, 5, 11, 8dchrf 25188 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
15143adant3r3 1200 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
16 simpr3 1238 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
173, 4, 5, 11, 16dchrf 25188 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
18 mulass 10237 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
1918adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
2010, 13, 15, 17, 19caofass 7098 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥𝑓 · 𝑦) ∘𝑓 · 𝑧) = (𝑥𝑓 · (𝑦𝑓 · 𝑧)))
21 simpr1 1234 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
22 simpr2 1236 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
233, 4, 5, 6, 21, 22dchrmul 25194 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑓 · 𝑦))
2423oveq1d 6830 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘𝑓 · 𝑧) = ((𝑥𝑓 · 𝑦) ∘𝑓 · 𝑧))
253, 4, 5, 6, 22, 16dchrmul 25194 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦𝑓 · 𝑧))
2625oveq2d 6831 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥𝑓 · (𝑦(+g𝐺)𝑧)) = (𝑥𝑓 · (𝑦𝑓 · 𝑧)))
2720, 24, 263eqtr4d 2805 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘𝑓 · 𝑧) = (𝑥𝑓 · (𝑦(+g𝐺)𝑧)))
2893adant3r3 1200 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
293, 4, 5, 6, 28, 16dchrmul 25194 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘𝑓 · 𝑧))
303, 4, 5, 6, 22, 16dchrmulcl 25195 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
313, 4, 5, 6, 21, 30dchrmul 25194 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥𝑓 · (𝑦(+g𝐺)𝑧)))
3227, 29, 313eqtr4d 2805 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
33 eqid 2761 . . . 4 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
34 eqid 2761 . . . 4 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))
35 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
363, 4, 5, 11, 33, 34, 35dchr1cl 25197 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) ∈ (Base‘𝐺))
37 simpr 479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
383, 4, 5, 11, 33, 34, 6, 37dchrmulid2 25198 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))(+g𝐺)𝑥) = 𝑥)
39 eqid 2761 . . . . 5 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))
403, 4, 5, 11, 33, 34, 6, 37, 39dchrinvcl 25199 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))))
4140simpld 477 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺))
4240simprd 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)))
431, 2, 9, 32, 36, 38, 41, 42isgrpd 17666 . 2 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
44 fvexd 6366 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
45 mulcom 10235 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4645adantl 473 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4744, 12, 14, 46caofcom 7096 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥𝑓 · 𝑦) = (𝑦𝑓 · 𝑥))
483, 4, 5, 6, 7, 8dchrmul 25194 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑓 · 𝑦))
493, 4, 5, 6, 8, 7dchrmul 25194 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦𝑓 · 𝑥))
5047, 48, 493eqtr4d 2805 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
511, 2, 43, 50isabld 18427 1 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  Vcvv 3341  ifcif 4231   ↦ cmpt 4882  ⟶wf 6046  ‘cfv 6050  (class class class)co 6815   ∘𝑓 cof 7062  ℂcc 10147  0cc0 10149  1c1 10150   · cmul 10154   / cdiv 10897  ℕcn 11233  Basecbs 16080  +gcplusg 16164  Abelcabl 18415  Unitcui 18860  ℤ/nℤczn 20074  DChrcdchr 25178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-ec 7916  df-qs 7920  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-imas 16391  df-qus 16392  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-grp 17647  df-minusg 17648  df-sbg 17649  df-subg 17813  df-nsg 17814  df-eqg 17815  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19195  df-sra 19395  df-rgmod 19396  df-lidl 19397  df-rsp 19398  df-2idl 19455  df-cnfld 19970  df-zring 20042  df-zn 20078  df-dchr 25179 This theorem is referenced by:  dchr1  25203  dchrinv  25207  dchr1re  25209  dchrpt  25213  dchrsum2  25214  sumdchr2  25216  dchrhash  25217  dchr2sum  25219  rpvmasumlem  25397  rpvmasum2  25422  dchrisum0re  25423
 Copyright terms: Public domain W3C validator