![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchr1 | Structured version Visualization version GIF version |
Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchr1.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchr1.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchr1.o | ⊢ 1 = (0g‘𝐺) |
dchr1.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchr1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchr1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
dchr1 | ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchr1.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchr1.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | eqid 2771 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | eqid 2771 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
5 | dchr1.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
6 | eqid 2771 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
7 | dchr1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dchr1cl 25197 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺)) |
9 | eleq1w 2833 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑘 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈)) | |
10 | 9 | ifbid 4247 | . . . . 5 ⊢ (𝑘 = 𝑥 → if(𝑘 ∈ 𝑈, 1, 0) = if(𝑥 ∈ 𝑈, 1, 0)) |
11 | 10 | cbvmptv 4884 | . . . 4 ⊢ (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥 ∈ 𝑈, 1, 0)) |
12 | eqid 2771 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 1, 2, 3, 4, 5, 11, 12, 8 | dchrmulid2 25198 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
14 | 1 | dchrabl 25200 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
15 | ablgrp 18405 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
16 | dchr1.o | . . . . 5 ⊢ 1 = (0g‘𝐺) | |
17 | 3, 12, 16 | isgrpid2 17666 | . . . 4 ⊢ (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
18 | 7, 14, 15, 17 | 4syl 19 | . . 3 ⊢ (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))(+g‘𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0)))) |
19 | 8, 13, 18 | mpbi2and 691 | . 2 ⊢ (𝜑 → 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
20 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 = 𝐴) | |
21 | dchr1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
22 | 21 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐴 ∈ 𝑈) |
23 | 20, 22 | eqeltrd 2850 | . . 3 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝑘 ∈ 𝑈) |
24 | 23 | iftrued 4233 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → if(𝑘 ∈ 𝑈, 1, 0) = 1) |
25 | 4, 5 | unitss 18868 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑍) |
26 | 25, 21 | sseldi 3750 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑍)) |
27 | 1cnd 10258 | . 2 ⊢ (𝜑 → 1 ∈ ℂ) | |
28 | 19, 24, 26, 27 | fvmptd 6430 | 1 ⊢ (𝜑 → ( 1 ‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ifcif 4225 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 1c1 10139 ℕcn 11222 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 Abelcabl 18401 Unitcui 18847 ℤ/nℤczn 20066 DChrcdchr 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-imas 16376 df-qus 16377 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-nsg 17800 df-eqg 17801 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-subrg 18988 df-lmod 19075 df-lss 19143 df-lsp 19185 df-sra 19387 df-rgmod 19388 df-lidl 19389 df-rsp 19390 df-2idl 19447 df-cnfld 19962 df-zring 20034 df-zn 20070 df-dchr 25179 |
This theorem is referenced by: dchrinv 25207 dchr1re 25209 dchrsum2 25214 rpvmasumlem 25397 rpvmasum2 25422 |
Copyright terms: Public domain | W3C validator |