Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  datisi Structured version   Visualization version   GIF version

Theorem datisi 2724
 Description: "Datisi", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
datisi.maj 𝑥(𝜑𝜓)
datisi.min 𝑥(𝜑𝜒)
Assertion
Ref Expression
datisi 𝑥(𝜒𝜓)

Proof of Theorem datisi
StepHypRef Expression
1 datisi.min . 2 𝑥(𝜑𝜒)
2 simpr 471 . . 3 ((𝜑𝜒) → 𝜒)
3 datisi.maj . . . . 5 𝑥(𝜑𝜓)
43spi 2208 . . . 4 (𝜑𝜓)
54adantr 466 . . 3 ((𝜑𝜒) → 𝜓)
62, 5jca 501 . 2 ((𝜑𝜒) → (𝜒𝜓))
71, 6eximii 1912 1 𝑥(𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382  ∀wal 1629  ∃wex 1852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853 This theorem is referenced by:  ferison  2726
 Copyright terms: Public domain W3C validator