Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  darapti Structured version   Visualization version   GIF version

Theorem darapti 2729
 Description: "Darapti", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is 𝜓. (In Aristotelian notation, AAI-3: MaP and MaS therefore SiP.) For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
darapti.maj 𝑥(𝜑𝜓)
darapti.min 𝑥(𝜑𝜒)
darapti.e 𝑥𝜑
Assertion
Ref Expression
darapti 𝑥(𝜒𝜓)

Proof of Theorem darapti
StepHypRef Expression
1 darapti.e . 2 𝑥𝜑
2 darapti.min . . . 4 𝑥(𝜑𝜒)
32spi 2208 . . 3 (𝜑𝜒)
4 darapti.maj . . . 4 𝑥(𝜑𝜓)
54spi 2208 . . 3 (𝜑𝜓)
63, 5jca 501 . 2 (𝜑 → (𝜒𝜓))
71, 6eximii 1912 1 𝑥(𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382  ∀wal 1629  ∃wex 1852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator