Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem56 Structured version   Visualization version   GIF version

Theorem dalem56 35536
Description: Lemma for dath 35544. Analogue of dalem55 35535 for line 𝑆𝑇. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem56 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))

Proof of Theorem dalem56
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 35464 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
653ad2ant1 1127 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 simp2 1131 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
87eqcomd 2777 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑍 = 𝑌)
9 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
101, 2, 3, 4, 9dalemswapyzps 35498 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
11 biid 251 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
12 biid 251 . . . 4 (((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))) ↔ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
13 dalem54.m . . . 4 = (meet‘𝐾)
14 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
15 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
16 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
17 eqid 2771 . . . 4 ((𝑑 𝑆) (𝑐 𝑃)) = ((𝑑 𝑆) (𝑐 𝑃))
18 eqid 2771 . . . 4 ((𝑑 𝑇) (𝑐 𝑄)) = ((𝑑 𝑇) (𝑐 𝑄))
19 eqid 2771 . . . 4 ((𝑑 𝑈) (𝑐 𝑅)) = ((𝑑 𝑈) (𝑐 𝑅))
20 eqid 2771 . . . 4 (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)
2111, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20dalem55 35535 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ 𝑍 = 𝑌 ∧ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
226, 8, 10, 21syl3anc 1476 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
23 dalem54.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
241dalemkelat 35432 . . . . . . 7 (𝜑𝐾 ∈ Lat)
25243ad2ant1 1127 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
261dalemkehl 35431 . . . . . . . 8 (𝜑𝐾 ∈ HL)
27263ad2ant1 1127 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
289dalemccea 35491 . . . . . . . 8 (𝜓𝑐𝐴)
29283ad2ant3 1129 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301dalempea 35434 . . . . . . . 8 (𝜑𝑃𝐴)
31303ad2ant1 1127 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
32 eqid 2771 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3332, 3, 4hlatjcl 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
3427, 29, 31, 33syl3anc 1476 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
359dalemddea 35492 . . . . . . . 8 (𝜓𝑑𝐴)
36353ad2ant3 1129 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
371dalemsea 35437 . . . . . . . 8 (𝜑𝑆𝐴)
38373ad2ant1 1127 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
3932, 3, 4hlatjcl 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
4027, 36, 38, 39syl3anc 1476 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
4132, 13latmcom 17283 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4225, 34, 40, 41syl3anc 1476 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4323, 42syl5eq 2817 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 = ((𝑑 𝑆) (𝑐 𝑃)))
44 dalem54.h . . . . 5 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
451dalemqea 35435 . . . . . . . 8 (𝜑𝑄𝐴)
46453ad2ant1 1127 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄𝐴)
4732, 3, 4hlatjcl 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑄𝐴) → (𝑐 𝑄) ∈ (Base‘𝐾))
4827, 29, 46, 47syl3anc 1476 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑄) ∈ (Base‘𝐾))
491dalemtea 35438 . . . . . . . 8 (𝜑𝑇𝐴)
50493ad2ant1 1127 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑇𝐴)
5132, 3, 4hlatjcl 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑇𝐴) → (𝑑 𝑇) ∈ (Base‘𝐾))
5227, 36, 50, 51syl3anc 1476 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑇) ∈ (Base‘𝐾))
5332, 13latmcom 17283 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑄) ∈ (Base‘𝐾) ∧ (𝑑 𝑇) ∈ (Base‘𝐾)) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5425, 48, 52, 53syl3anc 1476 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5544, 54syl5eq 2817 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 = ((𝑑 𝑇) (𝑐 𝑄)))
5643, 55oveq12d 6811 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) = (((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))))
5756oveq1d 6808 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)))
58 dalem54.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
59 dalem54.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
601dalemrea 35436 . . . . . . . . . 10 (𝜑𝑅𝐴)
61603ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅𝐴)
6232, 3, 4hlatjcl 35175 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑅𝐴) → (𝑐 𝑅) ∈ (Base‘𝐾))
6327, 29, 61, 62syl3anc 1476 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑅) ∈ (Base‘𝐾))
641dalemuea 35439 . . . . . . . . . 10 (𝜑𝑈𝐴)
65643ad2ant1 1127 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑈𝐴)
6632, 3, 4hlatjcl 35175 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑈𝐴) → (𝑑 𝑈) ∈ (Base‘𝐾))
6727, 36, 65, 66syl3anc 1476 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑈) ∈ (Base‘𝐾))
6832, 13latmcom 17283 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 𝑅) ∈ (Base‘𝐾) ∧ (𝑑 𝑈) ∈ (Base‘𝐾)) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
6925, 63, 67, 68syl3anc 1476 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
7059, 69syl5eq 2817 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 = ((𝑑 𝑈) (𝑐 𝑅)))
7156, 70oveq12d 6811 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))))
7271, 7oveq12d 6811 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7358, 72syl5eq 2817 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7456, 73oveq12d 6811 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
7522, 57, 743eqtr4d 2815 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253  Atomscatm 35072  HLchlt 35159  LPlanesclpl 35300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308
This theorem is referenced by:  dalem57  35537
  Copyright terms: Public domain W3C validator