Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem4 Structured version   Visualization version   GIF version

Theorem dalem4 35466
Description: Lemma for dalemdnee 35467. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem4 ((𝜑𝐷𝑇) → 𝐷𝐸)

Proof of Theorem dalem4
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . . 5 = (le‘𝐾)
3 dalemc.j . . . . 5 = (join‘𝐾)
4 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 35457 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
65adantr 466 . . 3 ((𝜑𝐷𝑇) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 dalem3.d . . . . . 6 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
81dalemkelat 35425 . . . . . . 7 (𝜑𝐾 ∈ Lat)
91, 3, 4dalempjqeb 35446 . . . . . . 7 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
101, 3, 4dalemsjteb 35447 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
11 eqid 2770 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
12 dalem3.m . . . . . . . 8 = (meet‘𝐾)
1311, 12latmcom 17282 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
148, 9, 10, 13syl3anc 1475 . . . . . 6 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
157, 14syl5eq 2816 . . . . 5 (𝜑𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
1615neeq1d 3001 . . . 4 (𝜑 → (𝐷𝑇 ↔ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇))
1716biimpa 462 . . 3 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇)
18 biid 251 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
19 dalem3.o . . . 4 𝑂 = (LPlanes‘𝐾)
20 dalem3.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
21 dalem3.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
22 eqid 2770 . . . 4 ((𝑆 𝑇) (𝑃 𝑄)) = ((𝑆 𝑇) (𝑃 𝑄))
23 eqid 2770 . . . 4 ((𝑇 𝑈) (𝑄 𝑅)) = ((𝑇 𝑈) (𝑄 𝑅))
2418, 2, 3, 4, 12, 19, 20, 21, 22, 23dalem3 35465 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
256, 17, 24syl2anc 565 . 2 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
2615adantr 466 . 2 ((𝜑𝐷𝑇) → 𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
27 dalem3.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
281dalemkehl 35424 . . . . . 6 (𝜑𝐾 ∈ HL)
291dalemqea 35428 . . . . . 6 (𝜑𝑄𝐴)
301dalemrea 35429 . . . . . 6 (𝜑𝑅𝐴)
3111, 3, 4hlatjcl 35168 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3228, 29, 30, 31syl3anc 1475 . . . . 5 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
331, 3, 4dalemtjueb 35448 . . . . 5 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
3411, 12latmcom 17282 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
358, 32, 33, 34syl3anc 1475 . . . 4 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
3627, 35syl5eq 2816 . . 3 (𝜑𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3736adantr 466 . 2 ((𝜑𝐷𝑇) → 𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3825, 26, 373netr4d 3019 1 ((𝜑𝐷𝑇) → 𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Latclat 17252  Atomscatm 35065  HLchlt 35152  LPlanesclpl 35293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300
This theorem is referenced by:  dalemdnee  35467
  Copyright terms: Public domain W3C validator