![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem10 | Structured version Visualization version GIF version |
Description: Lemma for dath 35340. Atom 𝐷 belongs to the axis of perspectivity 𝑋. (Contributed by NM, 19-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem10.m | ⊢ ∧ = (meet‘𝐾) |
dalem10.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem10.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem10.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem10.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
dalem10.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
Ref | Expression |
---|---|
dalem10 | ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 35228 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
4 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 3, 4 | dalempjqeb 35249 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
6 | 1, 4 | dalemreb 35245 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (Base‘𝐾)) |
7 | eqid 2651 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8, 3 | latlej1 17107 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
10 | 2, 5, 6, 9 | syl3anc 1366 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
11 | 1, 3, 4 | dalemsjteb 35250 | . . . 4 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ∈ (Base‘𝐾)) |
12 | 1, 4 | dalemueb 35248 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
13 | 7, 8, 3 | latlej1 17107 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
14 | 2, 11, 12, 13 | syl3anc 1366 | . . 3 ⊢ (𝜑 → (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
15 | dalem10.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
16 | dalem10.o | . . . . . 6 ⊢ 𝑂 = (LPlanes‘𝐾) | |
17 | 1, 16 | dalemyeb 35253 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
18 | 15, 17 | syl5eqelr 2735 | . . . 4 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
19 | dalem10.z | . . . . 5 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
20 | 1 | dalemzeo 35237 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
21 | 7, 16 | lplnbase 35138 | . . . . . 6 ⊢ (𝑍 ∈ 𝑂 → 𝑍 ∈ (Base‘𝐾)) |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐾)) |
23 | 19, 22 | syl5eqelr 2735 | . . . 4 ⊢ (𝜑 → ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾)) |
24 | dalem10.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
25 | 7, 8, 24 | latmlem12 17130 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) ∧ ((𝑆 ∨ 𝑇) ∈ (Base‘𝐾) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
26 | 2, 5, 18, 11, 23, 25 | syl122anc 1375 | . . 3 ⊢ (𝜑 → (((𝑃 ∨ 𝑄) ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ (𝑆 ∨ 𝑇) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)))) |
27 | 10, 14, 26 | mp2and 715 | . 2 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈))) |
28 | dalem10.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
29 | dalem10.x | . . 3 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
30 | 15, 19 | oveq12i 6702 | . . 3 ⊢ (𝑌 ∧ 𝑍) = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
31 | 29, 30 | eqtri 2673 | . 2 ⊢ 𝑋 = (((𝑃 ∨ 𝑄) ∨ 𝑅) ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
32 | 27, 28, 31 | 3brtr4g 4719 | 1 ⊢ (𝜑 → 𝐷 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 lecple 15995 joincjn 16991 meetcmee 16992 Latclat 17092 Atomscatm 34868 HLchlt 34955 LPlanesclpl 35096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-poset 16993 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-lat 17093 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-lplanes 35103 |
This theorem is referenced by: dalem11 35278 dalem16 35283 dalem54 35330 |
Copyright terms: Public domain | W3C validator |