Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem11 Structured version   Visualization version   GIF version

Theorem dalawlem11 35689
Description: Lemma for dalaw 35694. First part of dalawlem13 35691. (Contributed by NM, 17-Sep-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem11
StepHypRef Expression
1 eqid 2771 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . . . 4 = (le‘𝐾)
3 simp11 1245 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
4 hllat 35172 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
6 simp21 1248 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
7 simp22 1249 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
8 dalawlem.j . . . . . . 7 = (join‘𝐾)
9 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
101, 8, 9hlatjcl 35175 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
113, 6, 7, 10syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
12 simp31 1251 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
13 simp32 1252 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
141, 8, 9hlatjcl 35175 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
153, 12, 13, 14syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑇) ∈ (Base‘𝐾))
16 dalawlem.m . . . . . 6 = (meet‘𝐾)
171, 16latmcl 17260 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
185, 11, 15, 17syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾))
19 simp23 1250 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
201, 8, 9hlatjcl 35175 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
213, 7, 19, 20syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
221, 2, 16latmle1 17284 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
235, 11, 15, 22syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑃 𝑄))
24 simp12 1246 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑄 𝑅))
251, 9atbase 35098 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
267, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
271, 9atbase 35098 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
2819, 27syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 ∈ (Base‘𝐾))
291, 2, 8latlej1 17268 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑄 (𝑄 𝑅))
305, 26, 28, 29syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑅))
311, 9atbase 35098 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
326, 31syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 ∈ (Base‘𝐾))
331, 2, 8latjle12 17270 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑄 𝑅) ∧ 𝑄 (𝑄 𝑅)) ↔ (𝑃 𝑄) (𝑄 𝑅)))
345, 32, 26, 21, 33syl13anc 1478 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑅) ∧ 𝑄 (𝑄 𝑅)) ↔ (𝑃 𝑄) (𝑄 𝑅)))
3524, 30, 34mpbi2and 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) (𝑄 𝑅))
361, 2, 5, 18, 11, 21, 23, 35lattrd 17266 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅))
371, 9atbase 35098 . . . . . . . 8 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3813, 37syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
391, 8latjcl 17259 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
405, 11, 38, 39syl3anc 1476 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾))
411, 16latmcl 17260 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ∈ (Base‘𝐾))
425, 40, 15, 41syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ∈ (Base‘𝐾))
431, 8, 9hlatjcl 35175 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
443, 19, 6, 43syl3anc 1476 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
45 simp33 1253 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
461, 8, 9hlatjcl 35175 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
473, 45, 12, 46syl3anc 1476 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
481, 16latmcl 17260 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
495, 44, 47, 48syl3anc 1476 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
501, 9atbase 35098 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5145, 50syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 ∈ (Base‘𝐾))
521, 8latjcl 17259 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾))
535, 49, 51, 52syl3anc 1476 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾))
541, 8latjcl 17259 . . . . . 6 ((𝐾 ∈ Lat ∧ (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) ∈ (Base‘𝐾))
555, 53, 38, 54syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) ∈ (Base‘𝐾))
561, 2, 8latlej1 17268 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
575, 11, 38, 56syl3anc 1476 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ((𝑃 𝑄) 𝑇))
581, 2, 16latmlem1 17289 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾))) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑇) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇))))
595, 11, 40, 15, 58syl13anc 1478 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) ((𝑃 𝑄) 𝑇) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇))))
6057, 59mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
611, 2, 8latlej2 17269 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → 𝑇 ((𝑃 𝑄) 𝑇))
625, 11, 38, 61syl3anc 1476 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ((𝑃 𝑄) 𝑇))
631, 2, 8, 16, 9atmod2i2 35670 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ 𝑇 ((𝑃 𝑄) 𝑇)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) = (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
643, 12, 40, 38, 62, 63syl131anc 1489 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) = (((𝑃 𝑄) 𝑇) (𝑆 𝑇)))
651, 8, 9hlatjcl 35175 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
663, 7, 13, 65syl3anc 1476 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
671, 8, 9hlatjcl 35175 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
683, 6, 12, 67syl3anc 1476 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
691, 16latmcom 17283 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
705, 66, 68, 69syl3anc 1476 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
71 simp13 1247 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
7270, 71eqbrtrd 4808 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈))
731, 16latmcl 17260 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
745, 66, 68, 73syl3anc 1476 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾))
751, 8, 9hlatjcl 35175 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
763, 19, 45, 75syl3anc 1476 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑈) ∈ (Base‘𝐾))
771, 2, 8latjlej2 17274 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((𝑄 𝑇) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → (((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈))))
785, 74, 76, 32, 77syl13anc 1478 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈))))
7972, 78mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) (𝑃 (𝑅 𝑈)))
801, 9atbase 35098 . . . . . . . . . . . . 13 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
8112, 80syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
821, 2, 8latlej1 17268 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑆))
835, 32, 81, 82syl3anc 1476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃 (𝑃 𝑆))
841, 2, 8, 16, 9atmod1i1 35665 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑆)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
853, 6, 66, 68, 83, 84syl131anc 1489 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 ((𝑄 𝑇) (𝑃 𝑆))) = ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)))
868, 9hlatjass 35178 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = (𝑃 (𝑅 𝑈)))
873, 6, 19, 45, 86syl13anc 1478 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = (𝑃 (𝑅 𝑈)))
888, 9hlatjcom 35176 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
893, 6, 19, 88syl3anc 1476 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
9089oveq1d 6808 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑅) 𝑈) = ((𝑅 𝑃) 𝑈))
9187, 90eqtr3d 2807 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑅 𝑈)) = ((𝑅 𝑃) 𝑈))
9279, 85, 913brtr3d 4817 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈))
931, 2, 8latlej2 17269 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑈 𝑆))
945, 51, 81, 93syl3anc 1476 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑈 𝑆))
951, 8latjcl 17259 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
965, 32, 66, 95syl3anc 1476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾))
971, 16latmcl 17260 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾))
985, 96, 68, 97syl3anc 1476 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾))
991, 8latjcl 17259 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾))
1005, 44, 51, 99syl3anc 1476 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾))
1011, 2, 16latmlem12 17291 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) 𝑈) ∈ (Base‘𝐾)) ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾))) → ((((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈) ∧ 𝑆 (𝑈 𝑆)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆))))
1025, 98, 100, 81, 47, 101syl122anc 1485 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) ((𝑅 𝑃) 𝑈) ∧ 𝑆 (𝑈 𝑆)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆))))
10392, 94, 102mp2and 679 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
104 hlol 35170 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
1053, 104syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
1061, 16latmassOLD 35038 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ ((𝑃 (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) = ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)))
107105, 96, 68, 81, 106syl13anc 1478 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆) = ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)))
1088, 9hlatjass 35178 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑇𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
1093, 6, 7, 13, 108syl13anc 1478 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑇) = (𝑃 (𝑄 𝑇)))
110109eqcomd 2777 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 (𝑄 𝑇)) = ((𝑃 𝑄) 𝑇))
1111, 2, 8latlej2 17269 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑃 𝑆))
1125, 32, 81, 111syl3anc 1476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 (𝑃 𝑆))
1131, 2, 16latleeqm2 17288 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑆 (𝑃 𝑆) ↔ ((𝑃 𝑆) 𝑆) = 𝑆))
1145, 81, 68, 113syl3anc 1476 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 (𝑃 𝑆) ↔ ((𝑃 𝑆) 𝑆) = 𝑆))
115112, 114mpbid 222 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑆) = 𝑆)
116110, 115oveq12d 6811 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 (𝑄 𝑇)) ((𝑃 𝑆) 𝑆)) = (((𝑃 𝑄) 𝑇) 𝑆))
117107, 116eqtr2d 2806 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) = (((𝑃 (𝑄 𝑇)) (𝑃 𝑆)) 𝑆))
1181, 2, 8latlej1 17268 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑈 (𝑈 𝑆))
1195, 51, 81, 118syl3anc 1476 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈 (𝑈 𝑆))
1201, 2, 8, 16, 9atmod4i1 35674 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑈𝐴 ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) ∧ 𝑈 (𝑈 𝑆)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) = (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
1213, 45, 44, 47, 119, 120syl131anc 1489 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) = (((𝑅 𝑃) 𝑈) (𝑈 𝑆)))
122103, 117, 1213brtr4d 4818 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈))
1231, 16latmcl 17260 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑇) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
1245, 40, 81, 123syl3anc 1476 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾))
1251, 2, 8latjlej1 17273 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑄) 𝑇) 𝑆) ∈ (Base‘𝐾) ∧ (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇)))
1265, 124, 53, 38, 125syl13anc 1478 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑅 𝑃) (𝑈 𝑆)) 𝑈) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇)))
127122, 126mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) 𝑇) 𝑆) 𝑇) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
12864, 127eqbrtrrd 4810 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) (𝑆 𝑇)) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
1291, 2, 5, 18, 42, 55, 60, 128lattrd 17266 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇))
1301, 8latj31 17307 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) = ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1315, 49, 51, 38, 130syl13anc 1478 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑅 𝑃) (𝑈 𝑆)) 𝑈) 𝑇) = ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
132129, 131breqtrd 4812 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))
1331, 8, 9hlatjcl 35175 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
1343, 13, 45, 133syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
1351, 8latjcl 17259 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
1365, 134, 49, 135syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
1371, 2, 16latlem12 17286 . . . 4 ((𝐾 ∈ Lat ∧ (((𝑃 𝑄) (𝑆 𝑇)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))) → ((((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))) ↔ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))))
1385, 18, 21, 136, 137syl13anc 1478 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑄) (𝑆 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))) ↔ ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆))))))
13936, 132, 138mpbi2and 691 . 2 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
1401, 2, 16latmle1 17284 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑅 𝑃))
1415, 44, 47, 140syl3anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑅 𝑃))
1421, 2, 8latlej2 17269 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 (𝑄 𝑅))
1435, 26, 28, 142syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅 (𝑄 𝑅))
1441, 2, 8latjle12 17270 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑅 (𝑄 𝑅) ∧ 𝑃 (𝑄 𝑅)) ↔ (𝑅 𝑃) (𝑄 𝑅)))
1455, 28, 32, 21, 144syl13anc 1478 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 (𝑄 𝑅) ∧ 𝑃 (𝑄 𝑅)) ↔ (𝑅 𝑃) (𝑄 𝑅)))
146143, 24, 145mpbi2and 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) (𝑄 𝑅))
1471, 2, 5, 49, 44, 21, 141, 146lattrd 17266 . . 3 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) (𝑄 𝑅))
1481, 2, 8, 16, 9llnmod2i2 35671 . . 3 (((𝐾 ∈ HL ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) ∧ (𝑇𝐴𝑈𝐴) ∧ ((𝑅 𝑃) (𝑈 𝑆)) (𝑄 𝑅)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) = ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
1493, 21, 49, 13, 45, 147, 148syl321anc 1498 . 2 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) = ((𝑄 𝑅) ((𝑇 𝑈) ((𝑅 𝑃) (𝑈 𝑆)))))
150139, 149breqtrrd 4814 1 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253  OLcol 34983  Atomscatm 35072  HLchlt 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35311  df-pmap 35312  df-padd 35604
This theorem is referenced by:  dalawlem13  35691
  Copyright terms: Public domain W3C validator