MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   GIF version

Theorem d1mat2pmat 20592
Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
d1mat2pmat.b 𝐵 = (Base‘(𝑁 Mat 𝑅))
d1mat2pmat.p 𝑃 = (Poly1𝑅)
d1mat2pmat.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
d1mat2pmat ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})

Proof of Theorem d1mat2pmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8079 . . . . . 6 {𝐴} ∈ Fin
2 eleq1 2718 . . . . . 6 (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin))
31, 2mpbiri 248 . . . . 5 (𝑁 = {𝐴} → 𝑁 ∈ Fin)
43adantr 480 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → 𝑁 ∈ Fin)
543ad2ant2 1103 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simp1 1081 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑅𝑉)
7 simp3 1083 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
8 d1mat2pmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
9 eqid 2651 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
10 d1mat2pmat.b . . . 4 𝐵 = (Base‘(𝑁 Mat 𝑅))
11 d1mat2pmat.p . . . 4 𝑃 = (Poly1𝑅)
12 d1mat2pmat.s . . . 4 𝑆 = (algSc‘𝑃)
138, 9, 10, 11, 12mat2pmatval 20577 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
145, 6, 7, 13syl3anc 1366 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
15 id 22 . . . . . . 7 (𝐴𝑉𝐴𝑉)
16 fvexd 6241 . . . . . . 7 (𝐴𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V)
1715, 15, 163jca 1261 . . . . . 6 (𝐴𝑉 → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
1817adantl 481 . . . . 5 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
19183ad2ant2 1103 . . . 4 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
20 eqid 2651 . . . . 5 (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))
21 oveq1 6697 . . . . . 6 (𝑖 = 𝐴 → (𝑖𝑀𝑗) = (𝐴𝑀𝑗))
2221fveq2d 6233 . . . . 5 (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗)))
23 oveq2 6698 . . . . . 6 (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴))
2423fveq2d 6233 . . . . 5 (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴)))
2520, 22, 24mpt2sn 7313 . . . 4 ((𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
2619, 25syl 17 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
27 mpt2eq12 6757 . . . . . . 7 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))))
2827eqeq1d 2653 . . . . . 6 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2928anidms 678 . . . . 5 (𝑁 = {𝐴} → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3029adantr 480 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
31303ad2ant2 1103 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3226, 31mpbird 247 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
3314, 32eqtrd 2685 1 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  {csn 4210  cop 4216  cfv 5926  (class class class)co 6690  cmpt2 6692  Fincfn 7997  Basecbs 15904  algSccascl 19359  Poly1cpl1 19595   Mat cmat 20261   matToPolyMat cmat2pmat 20557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-1o 7605  df-en 7998  df-fin 8001  df-mat2pmat 20560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator