MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem2a Structured version   Visualization version   GIF version

Theorem cygznlem2a 20138
Description: Lemma for cygzn 20141. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem2a (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem2a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cygzn.f . . . 4 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
2 fvexd 6365 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝐿𝑚) ∈ V)
3 cygzn.g . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
4 cyggrp 18511 . . . . . . 7 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
65adantr 472 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 479 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
8 cygzn.e . . . . . . . 8 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
9 ssrab2 3828 . . . . . . . 8 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} ⊆ 𝐵
108, 9eqsstri 3776 . . . . . . 7 𝐸𝐵
11 cygzn.x . . . . . . 7 (𝜑𝑋𝐸)
1210, 11sseldi 3742 . . . . . 6 (𝜑𝑋𝐵)
1312adantr 472 . . . . 5 ((𝜑𝑚 ∈ ℤ) → 𝑋𝐵)
14 cygzn.b . . . . . 6 𝐵 = (Base‘𝐺)
15 cygzn.m . . . . . 6 · = (.g𝐺)
1614, 15mulgcl 17780 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
176, 7, 13, 16syl3anc 1477 . . . 4 ((𝜑𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ 𝐵)
18 fveq2 6353 . . . 4 (𝑚 = 𝑘 → (𝐿𝑚) = (𝐿𝑘))
19 oveq1 6821 . . . 4 (𝑚 = 𝑘 → (𝑚 · 𝑋) = (𝑘 · 𝑋))
20 cygzn.n . . . . . . . 8 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
21 cygzn.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
22 cygzn.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑌)
2314, 20, 21, 15, 22, 8, 3, 11cygznlem1 20137 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) ↔ (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2423biimpd 219 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ)) → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))
2524exp32 632 . . . . 5 (𝜑 → (𝑚 ∈ ℤ → (𝑘 ∈ ℤ → ((𝐿𝑚) = (𝐿𝑘) → (𝑚 · 𝑋) = (𝑘 · 𝑋)))))
26253imp2 1443 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝐿𝑚) = (𝐿𝑘))) → (𝑚 · 𝑋) = (𝑘 · 𝑋))
271, 2, 17, 18, 19, 26fliftfund 6727 . . 3 (𝜑 → Fun 𝐹)
281, 2, 17fliftf 6729 . . 3 (𝜑 → (Fun 𝐹𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵))
2927, 28mpbid 222 . 2 (𝜑𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵)
30 hashcl 13359 . . . . . . . . . . 11 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
3130adantl 473 . . . . . . . . . 10 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
32 0nn0 11519 . . . . . . . . . . 11 0 ∈ ℕ0
3332a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
3431, 33ifclda 4264 . . . . . . . . 9 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
3520, 34syl5eqel 2843 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
36 eqid 2760 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
3721, 36, 22znzrhfo 20118 . . . . . . . 8 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
3835, 37syl 17 . . . . . . 7 (𝜑𝐿:ℤ–onto→(Base‘𝑌))
39 fof 6277 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
4038, 39syl 17 . . . . . 6 (𝜑𝐿:ℤ⟶(Base‘𝑌))
4140feqmptd 6412 . . . . 5 (𝜑𝐿 = (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
4241rneqd 5508 . . . 4 (𝜑 → ran 𝐿 = ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)))
43 forn 6280 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
4438, 43syl 17 . . . 4 (𝜑 → ran 𝐿 = (Base‘𝑌))
4542, 44eqtr3d 2796 . . 3 (𝜑 → ran (𝑚 ∈ ℤ ↦ (𝐿𝑚)) = (Base‘𝑌))
4645feq2d 6192 . 2 (𝜑 → (𝐹:ran (𝑚 ∈ ℤ ↦ (𝐿𝑚))⟶𝐵𝐹:(Base‘𝑌)⟶𝐵))
4729, 46mpbid 222 1 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  ifcif 4230  cop 4327  cmpt 4881  ran crn 5267  Fun wfun 6043  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  Fincfn 8123  0cc0 10148  0cn0 11504  cz 11589  chash 13331  Basecbs 16079  Grpcgrp 17643  .gcmg 17761  CycGrpccyg 18499  ℤRHomczrh 20070  ℤ/nczn 20073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-ec 7915  df-qs 7919  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-imas 16390  df-qus 16391  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-od 18168  df-cmn 18415  df-abl 18416  df-cyg 18500  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-rnghom 18937  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-sra 19394  df-rgmod 19395  df-lidl 19396  df-rsp 19397  df-2idl 19454  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zn 20077
This theorem is referenced by:  cygznlem2  20139  cygznlem3  20140
  Copyright terms: Public domain W3C validator