![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygznlem2 | Structured version Visualization version GIF version |
Description: Lemma for cygzn 20141. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
cygzn.b | ⊢ 𝐵 = (Base‘𝐺) |
cygzn.n | ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) |
cygzn.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
cygzn.m | ⊢ · = (.g‘𝐺) |
cygzn.l | ⊢ 𝐿 = (ℤRHom‘𝑌) |
cygzn.e | ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} |
cygzn.g | ⊢ (𝜑 → 𝐺 ∈ CycGrp) |
cygzn.x | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
cygzn.f | ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) |
Ref | Expression |
---|---|
cygznlem2 | ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝐹‘(𝐿‘𝑀)) = (𝑀 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygzn.f | . 2 ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) | |
2 | fvexd 6365 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝐿‘𝑚) ∈ V) | |
3 | ovexd 6844 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ V) | |
4 | fveq2 6353 | . 2 ⊢ (𝑚 = 𝑀 → (𝐿‘𝑚) = (𝐿‘𝑀)) | |
5 | oveq1 6821 | . 2 ⊢ (𝑚 = 𝑀 → (𝑚 · 𝑋) = (𝑀 · 𝑋)) | |
6 | cygzn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | cygzn.n | . . . 4 ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
8 | cygzn.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
9 | cygzn.m | . . . 4 ⊢ · = (.g‘𝐺) | |
10 | cygzn.l | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
11 | cygzn.e | . . . 4 ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} | |
12 | cygzn.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CycGrp) | |
13 | cygzn.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
14 | 6, 7, 8, 9, 10, 11, 12, 13, 1 | cygznlem2a 20138 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) |
15 | ffun 6209 | . . 3 ⊢ (𝐹:(Base‘𝑌)⟶𝐵 → Fun 𝐹) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐹) |
17 | 1, 2, 3, 4, 5, 16 | fliftval 6730 | 1 ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝐹‘(𝐿‘𝑀)) = (𝑀 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 Vcvv 3340 ifcif 4230 〈cop 4327 ↦ cmpt 4881 ran crn 5267 Fun wfun 6043 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 0cc0 10148 ℤcz 11589 ♯chash 13331 Basecbs 16079 .gcmg 17761 CycGrpccyg 18499 ℤRHomczrh 20070 ℤ/nℤczn 20073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-omul 7735 df-er 7913 df-ec 7915 df-qs 7919 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-rp 12046 df-fz 12540 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-dvds 15203 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-0g 16324 df-imas 16390 df-qus 16391 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-nsg 17813 df-eqg 17814 df-ghm 17879 df-od 18168 df-cmn 18415 df-abl 18416 df-cyg 18500 df-mgp 18710 df-ur 18722 df-ring 18769 df-cring 18770 df-oppr 18843 df-dvdsr 18861 df-rnghom 18937 df-subrg 19000 df-lmod 19087 df-lss 19155 df-lsp 19194 df-sra 19394 df-rgmod 19395 df-lidl 19396 df-rsp 19397 df-2idl 19454 df-cnfld 19969 df-zring 20041 df-zrh 20074 df-zn 20077 |
This theorem is referenced by: cygznlem3 20140 |
Copyright terms: Public domain | W3C validator |