Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem1 Structured version   Visualization version   GIF version

Theorem cygznlem1 20137
 Description: Lemma for cygzn 20141. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
Assertion
Ref Expression
cygznlem1 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝐺,𝑥   · ,𝑛,𝑥   𝑛,𝑌,𝑥   𝑛,𝐿,𝑥   𝑥,𝑁   𝑛,𝑋,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑛)   𝐾(𝑥,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑛)

Proof of Theorem cygznlem1
StepHypRef Expression
1 cygzn.n . . . . 5 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)
2 hashcl 13359 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
32adantl 473 . . . . . 6 ((𝜑𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
4 0nn0 11519 . . . . . . 7 0 ∈ ℕ0
54a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
63, 5ifclda 4264 . . . . 5 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
71, 6syl5eqel 2843 . . . 4 (𝜑𝑁 ∈ ℕ0)
87adantr 472 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℕ0)
9 simprl 811 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
10 simprr 813 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑀 ∈ ℤ)
11 cygzn.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
12 cygzn.l . . . 4 𝐿 = (ℤRHom‘𝑌)
1311, 12zndvds 20120 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐿𝐾) = (𝐿𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
148, 9, 10, 13syl3anc 1477 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
15 cygzn.g . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
16 cyggrp 18511 . . . . . . 7 (𝐺 ∈ CycGrp → 𝐺 ∈ Grp)
1715, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
18 cygzn.x . . . . . 6 (𝜑𝑋𝐸)
19 cygzn.b . . . . . . 7 𝐵 = (Base‘𝐺)
20 cygzn.m . . . . . . 7 · = (.g𝐺)
21 cygzn.e . . . . . . 7 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
22 eqid 2760 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
2319, 20, 21, 22cyggenod2 18507 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
2417, 18, 23syl2anc 696 . . . . 5 (𝜑 → ((od‘𝐺)‘𝑋) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
2524, 1syl6eqr 2812 . . . 4 (𝜑 → ((od‘𝐺)‘𝑋) = 𝑁)
2625adantr 472 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((od‘𝐺)‘𝑋) = 𝑁)
2726breq1d 4814 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ 𝑁 ∥ (𝐾𝑀)))
2817adantr 472 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐺 ∈ Grp)
2919, 20, 21iscyggen 18502 . . . . . 6 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3029simplbi 478 . . . . 5 (𝑋𝐸𝑋𝐵)
3118, 30syl 17 . . . 4 (𝜑𝑋𝐵)
3231adantr 472 . . 3 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑋𝐵)
33 eqid 2760 . . . 4 (0g𝐺) = (0g𝐺)
3419, 22, 20, 33odcong 18188 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
3528, 32, 9, 10, 34syl112anc 1481 . 2 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((od‘𝐺)‘𝑋) ∥ (𝐾𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
3614, 27, 353bitr2d 296 1 ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {crab 3054  ifcif 4230   class class class wbr 4804   ↦ cmpt 4881  ran crn 5267  ‘cfv 6049  (class class class)co 6814  Fincfn 8123  0cc0 10148   − cmin 10478  ℕ0cn0 11504  ℤcz 11589  ♯chash 13331   ∥ cdvds 15202  Basecbs 16079  0gc0g 16322  Grpcgrp 17643  .gcmg 17761  odcod 18164  CycGrpccyg 18499  ℤRHomczrh 20070  ℤ/nℤczn 20073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-ec 7915  df-qs 7919  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-imas 16390  df-qus 16391  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-od 18168  df-cmn 18415  df-abl 18416  df-cyg 18500  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-rnghom 18937  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-sra 19394  df-rgmod 19395  df-lidl 19396  df-rsp 19397  df-2idl 19454  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zn 20077 This theorem is referenced by:  cygznlem2a  20138  cygznlem3  20140
 Copyright terms: Public domain W3C validator