![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyggic | Structured version Visualization version GIF version |
Description: Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.b | ⊢ 𝐵 = (Base‘𝐺) |
cygctb.c | ⊢ 𝐶 = (Base‘𝐻) |
Ref | Expression |
---|---|
cyggic | ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | cygctb.c | . . 3 ⊢ 𝐶 = (Base‘𝐻) | |
3 | 1, 2 | gicen 17941 | . 2 ⊢ (𝐺 ≃𝑔 𝐻 → 𝐵 ≈ 𝐶) |
4 | eqid 2761 | . . . . . 6 ⊢ if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐵 ∈ Fin, (♯‘𝐵), 0) | |
5 | eqid 2761 | . . . . . 6 ⊢ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) | |
6 | 1, 4, 5 | cygzn 20142 | . . . . 5 ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
7 | 6 | ad2antrr 764 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0))) |
8 | enfi 8344 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) | |
9 | 8 | adantl 473 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (𝐵 ∈ Fin ↔ 𝐶 ∈ Fin)) |
10 | hasheni 13351 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐶 → (♯‘𝐵) = (♯‘𝐶)) | |
11 | 10 | adantl 473 | . . . . . . 7 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (♯‘𝐵) = (♯‘𝐶)) |
12 | 9, 11 | ifbieq1d 4254 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0)) |
13 | 12 | fveq2d 6358 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
14 | eqid 2761 | . . . . . . . 8 ⊢ if(𝐶 ∈ Fin, (♯‘𝐶), 0) = if(𝐶 ∈ Fin, (♯‘𝐶), 0) | |
15 | eqid 2761 | . . . . . . . 8 ⊢ (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) = (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) | |
16 | 2, 14, 15 | cygzn 20142 | . . . . . . 7 ⊢ (𝐻 ∈ CycGrp → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
17 | 16 | ad2antlr 765 | . . . . . 6 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0))) |
18 | gicsym 17938 | . . . . . 6 ⊢ (𝐻 ≃𝑔 (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐶 ∈ Fin, (♯‘𝐶), 0)) ≃𝑔 𝐻) |
20 | 13, 19 | eqbrtrd 4827 | . . . 4 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) |
21 | gictr 17939 | . . . 4 ⊢ ((𝐺 ≃𝑔 (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ∧ (ℤ/nℤ‘if(𝐵 ∈ Fin, (♯‘𝐵), 0)) ≃𝑔 𝐻) → 𝐺 ≃𝑔 𝐻) | |
22 | 7, 20, 21 | syl2anc 696 | . . 3 ⊢ (((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) ∧ 𝐵 ≈ 𝐶) → 𝐺 ≃𝑔 𝐻) |
23 | 22 | ex 449 | . 2 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐵 ≈ 𝐶 → 𝐺 ≃𝑔 𝐻)) |
24 | 3, 23 | impbid2 216 | 1 ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ifcif 4231 class class class wbr 4805 ‘cfv 6050 ≈ cen 8121 Fincfn 8124 0cc0 10149 ♯chash 13332 Basecbs 16080 ≃𝑔 cgic 17922 CycGrpccyg 18500 ℤ/nℤczn 20074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-tpos 7523 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-omul 7736 df-er 7914 df-ec 7916 df-qs 7920 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-acn 8979 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-rp 12047 df-fz 12541 df-fl 12808 df-mod 12884 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-dvds 15204 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-0g 16325 df-imas 16391 df-qus 16392 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-nsg 17814 df-eqg 17815 df-ghm 17880 df-gim 17923 df-gic 17924 df-od 18169 df-cmn 18416 df-abl 18417 df-cyg 18501 df-mgp 18711 df-ur 18723 df-ring 18770 df-cring 18771 df-oppr 18844 df-dvdsr 18862 df-rnghom 18938 df-subrg 19001 df-lmod 19088 df-lss 19156 df-lsp 19195 df-sra 19395 df-rgmod 19396 df-lidl 19397 df-rsp 19398 df-2idl 19455 df-cnfld 19970 df-zring 20042 df-zrh 20075 df-zn 20078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |