MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggex2 Structured version   Visualization version   GIF version

Theorem cyggex2 18519
Description: The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
cyggex.o 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
cyggex2 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))

Proof of Theorem cyggex2
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2761 . . 3 (.g𝐺) = (.g𝐺)
3 eqid 2761 . . 3 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}
41, 2, 3iscyg2 18505 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅))
5 n0 4075 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
6 ssrab2 3829 . . . . . . . . 9 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ⊆ 𝐵
7 simpr 479 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
86, 7sseldi 3743 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦𝐵)
9 eqid 2761 . . . . . . . . 9 (od‘𝐺) = (od‘𝐺)
101, 2, 3, 9cyggenod2 18508 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
118, 10jca 555 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
1211ex 449 . . . . . 6 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))))
13 cyggex.o . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
141, 13gexcl 18216 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐸 ∈ ℕ0)
1514adantr 472 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 ∈ ℕ0)
16 hashcl 13360 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1716adantl 473 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
18 0nn0 11520 . . . . . . . . . 10 0 ∈ ℕ0
1918a1i 11 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
2017, 19ifclda 4265 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0)
21 breq2 4809 . . . . . . . . 9 ((♯‘𝐵) = if(𝐵 ∈ Fin, (♯‘𝐵), 0) → (𝐸 ∥ (♯‘𝐵) ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
22 breq2 4809 . . . . . . . . 9 (0 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) → (𝐸 ∥ 0 ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
231, 13gexdvds3 18226 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
2423adantlr 753 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
2515adantr 472 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ0)
26 nn0z 11613 . . . . . . . . . 10 (𝐸 ∈ ℕ0𝐸 ∈ ℤ)
27 dvds0 15220 . . . . . . . . . 10 (𝐸 ∈ ℤ → 𝐸 ∥ 0)
2825, 26, 273syl 18 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∥ 0)
2921, 22, 24, 28ifbothda 4268 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0))
30 simprr 813 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
311, 13, 9gexod 18222 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3231adantrr 755 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3330, 32eqbrtrrd 4829 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∥ 𝐸)
34 dvdseq 15259 . . . . . . . 8 (((𝐸 ∈ ℕ0 ∧ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∈ ℕ0) ∧ (𝐸 ∥ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∧ if(𝐵 ∈ Fin, (♯‘𝐵), 0) ∥ 𝐸)) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
3515, 20, 29, 33, 34syl22anc 1478 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
3635ex 449 . . . . . 6 (𝐺 ∈ Grp → ((𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (♯‘𝐵), 0)) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
3712, 36syld 47 . . . . 5 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
3837exlimdv 2011 . . . 4 (𝐺 ∈ Grp → (∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
395, 38syl5bi 232 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)))
4039imp 444 . 2 ((𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅) → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
414, 40sylbi 207 1 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2140  wne 2933  {crab 3055  c0 4059  ifcif 4231   class class class wbr 4805  cmpt 4882  ran crn 5268  cfv 6050  (class class class)co 6815  Fincfn 8124  0cc0 10149  0cn0 11505  cz 11590  chash 13332  cdvds 15203  Basecbs 16080  Grpcgrp 17644  .gcmg 17762  odcod 18165  gExcgex 18166  CycGrpccyg 18500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-omul 7736  df-er 7914  df-ec 7916  df-qs 7920  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-sum 14637  df-dvds 15204  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-eqg 17815  df-od 18169  df-gex 18170  df-cyg 18501
This theorem is referenced by:  cyggex  18520
  Copyright terms: Public domain W3C validator