MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Visualization version   GIF version

Theorem cyggeninv 18505
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggeninv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
cyggeninv ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑁,𝑥   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem cyggeninv
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5 𝐵 = (Base‘𝐺)
2 iscyg.2 . . . . 5 · = (.g𝐺)
3 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen2 18503 . . . 4 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
54simprbda 654 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → 𝑋𝐵)
6 cyggeninv.n . . . 4 𝑁 = (invg𝐺)
71, 6grpinvcl 17688 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
85, 7syldan 488 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐵)
94simplbda 655 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
10 oveq1 6821 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋))
1110eqeq2d 2770 . . . . . 6 (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋)))
1211cbvrexv 3311 . . . . 5 (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋))
13 znegcl 11624 . . . . . . . . 9 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
1413adantl 473 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
15 simpr 479 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
1615zcnd 11695 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
1716negnegd 10595 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚)
1817oveq1d 6829 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋))
19 simplll 815 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
205ad2antrr 764 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋𝐵)
211, 2, 6mulgneg2 17796 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2219, 14, 20, 21syl3anc 1477 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2318, 22eqtr3d 2796 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
24 oveq1 6821 . . . . . . . . . 10 (𝑛 = -𝑚 → (𝑛 · (𝑁𝑋)) = (-𝑚 · (𝑁𝑋)))
2524eqeq2d 2770 . . . . . . . . 9 (𝑛 = -𝑚 → ((𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))))
2625rspcev 3449 . . . . . . . 8 ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
2714, 23, 26syl2anc 696 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
28 eqeq1 2764 . . . . . . . 8 (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2928rexbidv 3190 . . . . . . 7 (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
3027, 29syl5ibrcom 237 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3130rexlimdva 3169 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3212, 31syl5bi 232 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3332ralimdva 3100 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
349, 33mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))
351, 2, 3iscyggen2 18503 . . 3 (𝐺 ∈ Grp → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
3635adantr 472 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
378, 34, 36mpbir2and 995 1 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  {crab 3054  cmpt 4881  ran crn 5267  cfv 6049  (class class class)co 6814  -cneg 10479  cz 11589  Basecbs 16079  Grpcgrp 17643  invgcminusg 17644  .gcmg 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-mulg 17762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator