![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cygctb | Structured version Visualization version GIF version |
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
cygctb | ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2760 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | 1, 2 | iscyg 18481 | . . 3 ⊢ (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) |
4 | 3 | simprbi 483 | . 2 ⊢ (𝐺 ∈ CycGrp → ∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
5 | ovex 6841 | . . . . . 6 ⊢ (𝑛(.g‘𝐺)𝑥) ∈ V | |
6 | eqid 2760 | . . . . . 6 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) | |
7 | 5, 6 | fnmpti 6183 | . . . . 5 ⊢ (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ |
8 | df-fo 6055 | . . . . 5 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) Fn ℤ ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵)) | |
9 | 7, 8 | mpbiran 991 | . . . 4 ⊢ ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵) |
10 | omelon 8716 | . . . . . . . 8 ⊢ ω ∈ On | |
11 | onenon 8965 | . . . . . . . 8 ⊢ (ω ∈ On → ω ∈ dom card) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ω ∈ dom card |
13 | znnen 15140 | . . . . . . . . 9 ⊢ ℤ ≈ ℕ | |
14 | nnenom 12973 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
15 | 13, 14 | entri 8175 | . . . . . . . 8 ⊢ ℤ ≈ ω |
16 | ennum 8963 | . . . . . . . 8 ⊢ (ℤ ≈ ω → (ℤ ∈ dom card ↔ ω ∈ dom card)) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ (ℤ ∈ dom card ↔ ω ∈ dom card) |
18 | 12, 17 | mpbir 221 | . . . . . 6 ⊢ ℤ ∈ dom card |
19 | fodomnum 9070 | . . . . . 6 ⊢ (ℤ ∈ dom card → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ℤ)) |
21 | domentr 8180 | . . . . . 6 ⊢ ((𝐵 ≼ ℤ ∧ ℤ ≈ ω) → 𝐵 ≼ ω) | |
22 | 15, 21 | mpan2 709 | . . . . 5 ⊢ (𝐵 ≼ ℤ → 𝐵 ≼ ω) |
23 | 20, 22 | syl6 35 | . . . 4 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)):ℤ–onto→𝐵 → 𝐵 ≼ ω)) |
24 | 9, 23 | syl5bir 233 | . . 3 ⊢ ((𝐺 ∈ CycGrp ∧ 𝑥 ∈ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
25 | 24 | rexlimdva 3169 | . 2 ⊢ (𝐺 ∈ CycGrp → (∃𝑥 ∈ 𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝐺)𝑥)) = 𝐵 → 𝐵 ≼ ω)) |
26 | 4, 25 | mpd 15 | 1 ⊢ (𝐺 ∈ CycGrp → 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 class class class wbr 4804 ↦ cmpt 4881 dom cdm 5266 ran crn 5267 Oncon0 5884 Fn wfn 6044 –onto→wfo 6047 ‘cfv 6049 (class class class)co 6813 ωcom 7230 ≈ cen 8118 ≼ cdom 8119 cardccrd 8951 ℕcn 11212 ℤcz 11569 Basecbs 16059 Grpcgrp 17623 .gcmg 17741 CycGrpccyg 18479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-omul 7734 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-oi 8580 df-card 8955 df-acn 8958 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-cyg 18480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |