MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygctb Structured version   Visualization version   GIF version

Theorem cygctb 18493
Description: A cyclic group is countable. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
cygctb (𝐺 ∈ CycGrp → 𝐵 ≼ ω)

Proof of Theorem cygctb
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2760 . . . 4 (.g𝐺) = (.g𝐺)
31, 2iscyg 18481 . . 3 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
43simprbi 483 . 2 (𝐺 ∈ CycGrp → ∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
5 ovex 6841 . . . . . 6 (𝑛(.g𝐺)𝑥) ∈ V
6 eqid 2760 . . . . . 6 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))
75, 6fnmpti 6183 . . . . 5 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) Fn ℤ
8 df-fo 6055 . . . . 5 ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)):ℤ–onto𝐵 ↔ ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) Fn ℤ ∧ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵))
97, 8mpbiran 991 . . . 4 ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)):ℤ–onto𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵)
10 omelon 8716 . . . . . . . 8 ω ∈ On
11 onenon 8965 . . . . . . . 8 (ω ∈ On → ω ∈ dom card)
1210, 11ax-mp 5 . . . . . . 7 ω ∈ dom card
13 znnen 15140 . . . . . . . . 9 ℤ ≈ ℕ
14 nnenom 12973 . . . . . . . . 9 ℕ ≈ ω
1513, 14entri 8175 . . . . . . . 8 ℤ ≈ ω
16 ennum 8963 . . . . . . . 8 (ℤ ≈ ω → (ℤ ∈ dom card ↔ ω ∈ dom card))
1715, 16ax-mp 5 . . . . . . 7 (ℤ ∈ dom card ↔ ω ∈ dom card)
1812, 17mpbir 221 . . . . . 6 ℤ ∈ dom card
19 fodomnum 9070 . . . . . 6 (ℤ ∈ dom card → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)):ℤ–onto𝐵𝐵 ≼ ℤ))
2018, 19mp1i 13 . . . . 5 ((𝐺 ∈ CycGrp ∧ 𝑥𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)):ℤ–onto𝐵𝐵 ≼ ℤ))
21 domentr 8180 . . . . . 6 ((𝐵 ≼ ℤ ∧ ℤ ≈ ω) → 𝐵 ≼ ω)
2215, 21mpan2 709 . . . . 5 (𝐵 ≼ ℤ → 𝐵 ≼ ω)
2320, 22syl6 35 . . . 4 ((𝐺 ∈ CycGrp ∧ 𝑥𝐵) → ((𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)):ℤ–onto𝐵𝐵 ≼ ω))
249, 23syl5bir 233 . . 3 ((𝐺 ∈ CycGrp ∧ 𝑥𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐵 ≼ ω))
2524rexlimdva 3169 . 2 (𝐺 ∈ CycGrp → (∃𝑥𝐵 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵𝐵 ≼ ω))
264, 25mpd 15 1 (𝐺 ∈ CycGrp → 𝐵 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wrex 3051   class class class wbr 4804  cmpt 4881  dom cdm 5266  ran crn 5267  Oncon0 5884   Fn wfn 6044  ontowfo 6047  cfv 6049  (class class class)co 6813  ωcom 7230  cen 8118  cdom 8119  cardccrd 8951  cn 11212  cz 11569  Basecbs 16059  Grpcgrp 17623  .gcmg 17741  CycGrpccyg 18479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-card 8955  df-acn 8958  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-cyg 18480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator