![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cyclnspth | Structured version Visualization version GIF version |
Description: A (non trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
cyclnspth | ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscycl 26922 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | relpths 26851 | . . . . . . . . 9 ⊢ Rel (Paths‘𝐺) | |
3 | 2 | brrelexi 5297 | . . . . . . . 8 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹 ∈ V) |
4 | hasheq0 13356 | . . . . . . . . . 10 ⊢ (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
5 | 4 | necon3bid 2987 | . . . . . . . . 9 ⊢ (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
6 | 5 | bicomd 213 | . . . . . . . 8 ⊢ (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
7 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0)) |
8 | 7 | biimpa 462 | . . . . . 6 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
9 | spthdep 26865 | . . . . . . . 8 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | |
10 | 9 | neneqd 2948 | . . . . . . 7 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹))) |
11 | 10 | expcom 398 | . . . . . 6 ⊢ ((♯‘𝐹) ≠ 0 → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (𝐹(SPaths‘𝐺)𝑃 → ¬ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
13 | 12 | con2d 131 | . . . 4 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
14 | 13 | impancom 439 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
15 | 1, 14 | sylbi 207 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
16 | 15 | com12 32 | 1 ⊢ (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ∅c0 4063 class class class wbr 4787 ‘cfv 6030 0cc0 10142 ♯chash 13321 Pathscpths 26843 SPathscspths 26844 Cyclesccycls 26916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-wlks 26730 df-trls 26824 df-pths 26847 df-spths 26848 df-cycls 26918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |