Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Visualization version   GIF version

Theorem cxpsqrtlem 24639
 Description: Lemma for cxpsqrt 24640. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 10179 . . 3 i ∈ ℂ
2 sqrtcl 14292 . . . 4 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
32ad2antrr 764 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
4 mulcl 10204 . . 3 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
51, 3, 4sylancr 698 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℂ)
6 imval 14038 . . . 4 ((i · (√‘𝐴)) ∈ ℂ → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
75, 6syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
8 ine0 10649 . . . . . 6 i ≠ 0
9 divcan3 10895 . . . . . 6 (((√‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
101, 8, 9mp3an23 1557 . . . . 5 ((√‘𝐴) ∈ ℂ → ((i · (√‘𝐴)) / i) = (√‘𝐴))
113, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
1211fveq2d 6348 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘((i · (√‘𝐴)) / i)) = (ℜ‘(√‘𝐴)))
13 halfre 11430 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
1413recni 10236 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
15 logcl 24506 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
16 mulcl 10204 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1714, 15, 16sylancr 698 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1817recld 14125 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
1918reefcld 15009 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2017imcld 14126 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
2120recoscld 15065 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2218rpefcld 15026 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ+)
2322rpge0d 12061 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))))
24 immul2 14068 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ (log‘𝐴) ∈ ℂ) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2513, 15, 24sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2615imcld 14126 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2726recnd 10252 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
28 mulcom 10206 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
2914, 27, 28sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
3025, 29eqtrd 2786 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
31 logimcl 24507 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
3231simpld 477 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
33 pire 24401 . . . . . . . . . . . . . . . 16 π ∈ ℝ
3433renegcli 10526 . . . . . . . . . . . . . . 15 -π ∈ ℝ
35 ltle 10310 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3634, 26, 35sylancr 698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3732, 36mpd 15 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
3831simprd 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
3934, 33elicc2i 12424 . . . . . . . . . . . . 13 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4026, 37, 38, 39syl3anbrc 1426 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ (-π[,]π))
41 halfgt0 11432 . . . . . . . . . . . . . 14 0 < (1 / 2)
4213, 41elrpii 12020 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
4333recni 10236 . . . . . . . . . . . . . . 15 π ∈ ℂ
44 2cn 11275 . . . . . . . . . . . . . . 15 2 ∈ ℂ
45 2ne0 11297 . . . . . . . . . . . . . . 15 2 ≠ 0
46 divneg 10903 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4743, 44, 45, 46mp3an 1565 . . . . . . . . . . . . . 14 -(π / 2) = (-π / 2)
4834recni 10236 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4948, 44, 45divreci 10954 . . . . . . . . . . . . . 14 (-π / 2) = (-π · (1 / 2))
5047, 49eqtr2i 2775 . . . . . . . . . . . . 13 (-π · (1 / 2)) = -(π / 2)
5143, 44, 45divreci 10954 . . . . . . . . . . . . . 14 (π / 2) = (π · (1 / 2))
5251eqcomi 2761 . . . . . . . . . . . . 13 (π · (1 / 2)) = (π / 2)
5334, 33, 42, 50, 52iccdili 12496 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5440, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5530, 54eqeltrd 2831 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)))
56 cosq14ge0 24454 . . . . . . . . . 10 ((ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5755, 56syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5819, 21, 23, 57mulge0d 10788 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
59 cxpef 24602 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
6014, 59mp3an3 1554 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
61 efeul 15083 . . . . . . . . . . . 12 (((1 / 2) · (log‘𝐴)) ∈ ℂ → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6217, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6360, 62eqtrd 2786 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6463fveq2d 6348 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
6521recnd 10252 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
6620resincld 15064 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
6766recnd 10252 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
68 mulcl 10204 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
691, 67, 68sylancr 698 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
7065, 69addcld 10243 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))) ∈ ℂ)
7119, 70remul2d 14158 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
7221, 66crred 14162 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))) = (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
7372oveq2d 6821 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7464, 71, 733eqtrd 2790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7558, 74breqtrrd 4824 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
7675adantr 472 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
77 simpr 479 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = -(√‘𝐴))
7877fveq2d 6348 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘-(√‘𝐴)))
793renegd 14140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘-(√‘𝐴)) = -(ℜ‘(√‘𝐴)))
8078, 79eqtrd 2786 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = -(ℜ‘(√‘𝐴)))
8176, 80breqtrd 4822 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -(ℜ‘(√‘𝐴)))
823recld 14125 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ∈ ℝ)
8382le0neg1d 10783 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) ≤ 0 ↔ 0 ≤ -(ℜ‘(√‘𝐴))))
8481, 83mpbird 247 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ≤ 0)
85 sqrtrege0 14296 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴)))
8685ad2antrr 764 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(√‘𝐴)))
87 0re 10224 . . . . 5 0 ∈ ℝ
88 letri3 10307 . . . . 5 (((ℜ‘(√‘𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
8982, 87, 88sylancl 697 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
9084, 86, 89mpbir2and 995 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) = 0)
917, 12, 903eqtrd 2790 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = 0)
925, 91reim0bd 14131 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924   class class class wbr 4796  ‘cfv 6041  (class class class)co 6805  ℂcc 10118  ℝcr 10119  0cc0 10120  1c1 10121  ici 10122   + caddc 10123   · cmul 10125   < clt 10258   ≤ cle 10259  -cneg 10451   / cdiv 10868  2c2 11254  [,]cicc 12363  ℜcre 14028  ℑcim 14029  √csqrt 14164  expce 14983  sincsin 14985  cosccos 14986  πcpi 14988  logclog 24492  ↑𝑐ccxp 24493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-sin 14991  df-cos 14992  df-pi 14994  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-cxp 24495 This theorem is referenced by:  cxpsqrt  24640
 Copyright terms: Public domain W3C validator