MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpefd Structured version   Visualization version   GIF version

Theorem cxpefd 24679
Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
cxp0d.1 (𝜑𝐴 ∈ ℂ)
cxpefd.2 (𝜑𝐴 ≠ 0)
cxpefd.3 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
cxpefd (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))

Proof of Theorem cxpefd
StepHypRef Expression
1 cxp0d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cxpefd.2 . 2 (𝜑𝐴 ≠ 0)
3 cxpefd.3 . 2 (𝜑𝐵 ∈ ℂ)
4 cxpef 24632 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
51, 2, 3, 4syl3anc 1476 1 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6796  cc 10140  0cc0 10142   · cmul 10147  expce 14998  logclog 24522  𝑐ccxp 24523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-mulcl 10204  ax-i2m1 10210
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-cxp 24525
This theorem is referenced by:  dvcxp1  24702  dvcxp2  24703  dvcncxp1  24705  cxpcn  24707  abscxpbnd  24715  root1eq1  24717  cxpeq  24719  cxplogb  24745  efiatan  24860  efiatan2  24865  efrlim  24917  cxp2limlem  24923  cxploglim  24925  amgmlem  24937  zetacvg  24962  gamcvg2lem  25006  bposlem9  25238  chtppilimlem1  25383  ostth2lem4  25546  ostth2  25547  ostth3  25548  iprodgam  31966  proot1ex  38305  logcxp0  42854
  Copyright terms: Public domain W3C validator