![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version |
Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | cxpef 24632 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
5 | 1, 2, 3, 4 | syl3anc 1476 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 · cmul 10147 expce 14998 logclog 24522 ↑𝑐ccxp 24523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-mulcl 10204 ax-i2m1 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-cxp 24525 |
This theorem is referenced by: dvcxp1 24702 dvcxp2 24703 dvcncxp1 24705 cxpcn 24707 abscxpbnd 24715 root1eq1 24717 cxpeq 24719 cxplogb 24745 efiatan 24860 efiatan2 24865 efrlim 24917 cxp2limlem 24923 cxploglim 24925 amgmlem 24937 zetacvg 24962 gamcvg2lem 25006 bposlem9 25238 chtppilimlem1 25383 ostth2lem4 25546 ostth2 25547 ostth3 25548 iprodgam 31966 proot1ex 38305 logcxp0 42854 |
Copyright terms: Public domain | W3C validator |