![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxpef | Structured version Visualization version GIF version |
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
cxpef | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxpval 24630 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) | |
2 | 1 | 3adant2 1126 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
3 | simp2 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → 𝐴 ≠ 0) | |
4 | 3 | neneqd 2937 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → ¬ 𝐴 = 0) |
5 | 4 | iffalsed 4241 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘𝐴)))) |
6 | 2, 5 | eqtrd 2794 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ifcif 4230 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 0cc0 10148 1c1 10149 · cmul 10153 expce 15011 logclog 24521 ↑𝑐ccxp 24522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-mulcl 10210 ax-i2m1 10216 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-cxp 24524 |
This theorem is referenced by: cxpexpz 24633 logcxp 24635 1cxp 24638 ecxp 24639 rpcxpcl 24642 cxpne0 24643 cxpadd 24645 mulcxp 24651 cxpmul 24654 abscxp 24658 abscxp2 24659 cxplt 24660 cxple2 24663 cxpsqrtlem 24668 cxpsqrt 24669 cxpefd 24678 1cubrlem 24788 bposlem9 25237 iexpire 31949 |
Copyright terms: Public domain | W3C validator |