MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddle Structured version   Visualization version   GIF version

Theorem cxpaddle 24613
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
cxpaddle.1 (𝜑𝐴 ∈ ℝ)
cxpaddle.2 (𝜑 → 0 ≤ 𝐴)
cxpaddle.3 (𝜑𝐵 ∈ ℝ)
cxpaddle.4 (𝜑 → 0 ≤ 𝐵)
cxpaddle.5 (𝜑𝐶 ∈ ℝ+)
cxpaddle.6 (𝜑𝐶 ≤ 1)
Assertion
Ref Expression
cxpaddle (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))

Proof of Theorem cxpaddle
StepHypRef Expression
1 cxpaddle.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2 cxpaddle.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 10182 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 cxpaddle.2 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
5 cxpaddle.4 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
61, 2, 4, 5addge0d 10716 . . . . . . 7 (𝜑 → 0 ≤ (𝐴 + 𝐵))
7 cxpaddle.5 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
87rpred 11986 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
93, 6, 8recxpcld 24589 . . . . . 6 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
109adantr 472 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
1110recnd 10181 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
1211mulid2d 10171 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) = ((𝐴 + 𝐵)↑𝑐𝐶))
131adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
143anim1i 593 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
15 elrp 11948 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
1614, 15sylibr 224 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ+)
1713, 16rerpdivcld 12017 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ∈ ℝ)
182adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
1918, 16rerpdivcld 12017 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ∈ ℝ)
204adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐴)
213adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
22 simpr 479 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
23 divge0 11005 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
2413, 20, 21, 22, 23syl22anc 1440 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
258adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
2617, 24, 25recxpcld 24589 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
275adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐵)
28 divge0 11005 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
2918, 27, 21, 22, 28syl22anc 1440 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
3019, 29, 25recxpcld 24589 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
311, 2addge01d 10728 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
325, 31mpbid 222 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 𝐵))
3332adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ (𝐴 + 𝐵))
3421recnd 10181 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℂ)
3534mulid1d 10170 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
3633, 35breqtrrd 4788 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ ((𝐴 + 𝐵) · 1))
37 1red 10168 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ∈ ℝ)
38 ledivmul 11012 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
3913, 37, 21, 22, 38syl112anc 1443 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
4036, 39mpbird 247 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ 1)
417adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ+)
42 cxpaddle.6 . . . . . . . 8 (𝜑𝐶 ≤ 1)
4342adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ≤ 1)
4417, 24, 40, 41, 43cxpaddlelem 24612 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶))
452, 1addge02d 10729 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
464, 45mpbid 222 . . . . . . . . . 10 (𝜑𝐵 ≤ (𝐴 + 𝐵))
4746adantr 472 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ (𝐴 + 𝐵))
4847, 35breqtrrd 4788 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ ((𝐴 + 𝐵) · 1))
49 ledivmul 11012 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5018, 37, 21, 22, 49syl112anc 1443 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5148, 50mpbird 247 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ 1)
5219, 29, 51, 41, 43cxpaddlelem 24612 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶))
5317, 19, 26, 30, 44, 52le2addd 10759 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) ≤ (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)))
5413recnd 10181 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℂ)
5518recnd 10181 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℂ)
5616rpne0d 11991 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ≠ 0)
5754, 55, 34, 56divdird 10952 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))))
5834, 56dividd 10912 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = 1)
5957, 58eqtr3d 2760 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) = 1)
608recnd 10181 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
6160adantr 472 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℂ)
6213, 20, 16, 61divcxpd 24588 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6318, 27, 16, 61divcxpd 24588 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6462, 63oveq12d 6783 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
651, 4, 8recxpcld 24589 . . . . . . . . 9 (𝜑 → (𝐴𝑐𝐶) ∈ ℝ)
6665recnd 10181 . . . . . . . 8 (𝜑 → (𝐴𝑐𝐶) ∈ ℂ)
6766adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴𝑐𝐶) ∈ ℂ)
682, 5, 8recxpcld 24589 . . . . . . . . 9 (𝜑 → (𝐵𝑐𝐶) ∈ ℝ)
6968recnd 10181 . . . . . . . 8 (𝜑 → (𝐵𝑐𝐶) ∈ ℂ)
7069adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵𝑐𝐶) ∈ ℂ)
7116, 25rpcxpcld 24596 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ+)
7271rpne0d 11991 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≠ 0)
7367, 70, 11, 72divdird 10952 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7464, 73eqtr4d 2761 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7553, 59, 743brtr3d 4791 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7665, 68readdcld 10182 . . . . . 6 (𝜑 → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7776adantr 472 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7837, 77, 71lemuldivd 12035 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7975, 78mpbird 247 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8012, 79eqbrtrrd 4784 . 2 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
817rpne0d 11991 . . . . . 6 (𝜑𝐶 ≠ 0)
8260, 810cxpd 24576 . . . . 5 (𝜑 → (0↑𝑐𝐶) = 0)
831, 4, 8cxpge0d 24590 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑐𝐶))
842, 5, 8cxpge0d 24590 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝑐𝐶))
8565, 68, 83, 84addge0d 10716 . . . . 5 (𝜑 → 0 ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8682, 85eqbrtrd 4782 . . . 4 (𝜑 → (0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
87 oveq1 6772 . . . . 5 (0 = (𝐴 + 𝐵) → (0↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝑐𝐶))
8887breq1d 4770 . . . 4 (0 = (𝐴 + 𝐵) → ((0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
8986, 88syl5ibcom 235 . . 3 (𝜑 → (0 = (𝐴 + 𝐵) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
9089imp 444 . 2 ((𝜑 ∧ 0 = (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
91 0re 10153 . . . 4 0 ∈ ℝ
92 leloe 10237 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
9391, 3, 92sylancr 698 . . 3 (𝜑 → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
946, 93mpbid 222 . 2 (𝜑 → (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵)))
9580, 90, 94mpjaodan 862 1 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1596  wcel 2103   class class class wbr 4760  (class class class)co 6765  cc 10047  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054   < clt 10187  cle 10188   / cdiv 10797  +crp 11946  𝑐ccxp 24422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-shft 13927  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-limsup 14322  df-clim 14339  df-rlim 14340  df-sum 14537  df-ef 14918  df-sin 14920  df-cos 14921  df-pi 14923  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lp 21063  df-perf 21064  df-cn 21154  df-cnp 21155  df-haus 21242  df-tx 21488  df-hmeo 21681  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-xms 22247  df-ms 22248  df-tms 22249  df-cncf 22803  df-limc 23750  df-dv 23751  df-log 24423  df-cxp 24424
This theorem is referenced by:  abvcxp  25424
  Copyright terms: Public domain W3C validator