Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Visualization version   GIF version

Theorem cxp2limlem 24923
 Description: A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 10243 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
2 2rp 12040 . . . . 5 2 ∈ ℝ+
3 rplogcl 24571 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
4 2z 11611 . . . . . 6 2 ∈ ℤ
5 rpexpcl 13086 . . . . . 6 (((log‘𝐴) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝐴)↑2) ∈ ℝ+)
63, 4, 5sylancl 574 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((log‘𝐴)↑2) ∈ ℝ+)
7 rpdivcl 12059 . . . . 5 ((2 ∈ ℝ+ ∧ ((log‘𝐴)↑2) ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
82, 6, 7sylancr 575 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
98rpcnd 12077 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
10 divrcnv 14791 . . 3 ((2 / ((log‘𝐴)↑2)) ∈ ℂ → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
128rpred 12075 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ)
13 rerpdivcl 12064 . . 3 (((2 / ((log‘𝐴)↑2)) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
1412, 13sylan 569 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
15 simpr 471 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
16 simpl 468 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 1red 10257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 10752 . . . . . . . 8 0 < 1
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
20 simpr 471 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
211, 17, 16, 19, 20lttrd 10400 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
2216, 21elrpd 12072 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
23 rpre 12042 . . . . 5 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
24 rpcxpcl 24643 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ) → (𝐴𝑐𝑛) ∈ ℝ+)
2522, 23, 24syl2an 583 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) ∈ ℝ+)
2615, 25rpdivcld 12092 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ+)
2726rpred 12075 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ)
283adantr 466 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℝ+)
2915, 28rpmulcld 12091 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ+)
3029rpred 12075 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ)
3130resqcld 13242 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) ∈ ℝ)
3231rehalfcld 11481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) ∈ ℝ)
33 1rp 12039 . . . . . . . . . . 11 1 ∈ ℝ+
34 rpaddcl 12057 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (𝑛 · (log‘𝐴)) ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3533, 29, 34sylancr 575 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3635rpred 12075 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ)
3736, 32readdcld 10271 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) ∈ ℝ)
3830reefcld 15024 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (exp‘(𝑛 · (log‘𝐴))) ∈ ℝ)
3932, 35ltaddrp2d 12109 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)))
40 efgt1p2 15050 . . . . . . . . 9 ((𝑛 · (log‘𝐴)) ∈ ℝ+ → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4129, 40syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4232, 37, 38, 39, 41lttrd 10400 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < (exp‘(𝑛 · (log‘𝐴))))
4323adantl 467 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
4443recnd 10270 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
4544sqcld 13213 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℂ)
46 2cnd 11295 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ∈ ℂ)
476adantr 466 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℝ+)
4847rpcnd 12077 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℂ)
49 2ne0 11315 . . . . . . . . . 10 2 ≠ 0
5049a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ≠ 0)
5147rpne0d 12080 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ≠ 0)
5245, 46, 48, 50, 51divdiv2d 11035 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
533rpcnd 12077 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℂ)
5453adantr 466 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
5544, 54sqmuld 13227 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) = ((𝑛↑2) · ((log‘𝐴)↑2)))
5655oveq1d 6808 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
5752, 56eqtr4d 2808 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛 · (log‘𝐴))↑2) / 2))
5816recnd 10270 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
5958adantr 466 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
6022adantr 466 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ+)
6160rpne0d 12080 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ≠ 0)
6259, 61, 44cxpefd 24679 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) = (exp‘(𝑛 · (log‘𝐴))))
6342, 57, 623brtr4d 4818 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛))
64 rpexpcl 13086 . . . . . . . . 9 ((𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑛↑2) ∈ ℝ+)
6515, 4, 64sylancl 574 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℝ+)
668adantr 466 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
6765, 66rpdivcld 12092 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) ∈ ℝ+)
6867, 25, 15ltdiv2d 12098 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛) ↔ (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2))))))
6963, 68mpbid 222 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))))
709adantr 466 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
7165rpne0d 12080 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ≠ 0)
7266rpne0d 12080 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ≠ 0)
7344, 45, 70, 71, 72divdiv2d 11035 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)))
7444sqvald 13212 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) = (𝑛 · 𝑛))
7574oveq2d 6809 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)))
76 rpne0 12051 . . . . . . . 8 (𝑛 ∈ ℝ+𝑛 ≠ 0)
7776adantl 467 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
7870, 44, 44, 77, 77divcan5d 11029 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
7973, 75, 783eqtrd 2809 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
8069, 79breqtrd 4812 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < ((2 / ((log‘𝐴)↑2)) / 𝑛))
8127, 14, 80ltled 10387 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8281adantrr 696 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8326rpge0d 12079 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
8483adantrr 696 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
851, 1, 11, 14, 27, 82, 84rlimsqz2 14589 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 2145   ≠ wne 2943   class class class wbr 4786   ↦ cmpt 4863  ‘cfv 6031  (class class class)co 6793  ℂcc 10136  ℝcr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276   ≤ cle 10277   / cdiv 10886  2c2 11272  ℤcz 11579  ℝ+crp 12035  ↑cexp 13067   ⇝𝑟 crli 14424  expce 14998  logclog 24522  ↑𝑐ccxp 24523 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525 This theorem is referenced by:  cxp2lim  24924  cxploglim  24925
 Copyright terms: Public domain W3C validator