![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvslvec | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
Ref | Expression |
---|---|
cvslvec | ⊢ (𝜑 → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
2 | df-cvs 23142 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
3 | 2 | elin2 3950 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
4 | 3 | simprbi 478 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ LVec) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 LVecclvec 19314 ℂModcclm 23080 ℂVecccvs 23141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-in 3728 df-cvs 23142 |
This theorem is referenced by: cvsunit 23149 cvsdivcl 23151 isncvsngp 23167 |
Copyright terms: Public domain | W3C validator |