![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsdiveqd | Structured version Visualization version GIF version |
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cvsdiveqd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
cvsdiveqd.3 | ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) |
Ref | Expression |
---|---|
cvsdiveqd | ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsdiveqd.3 | . . 3 ⊢ (𝜑 → 𝑋 = ((𝐴 / 𝐵) · 𝑌)) | |
2 | 1 | oveq2d 6808 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
4 | 3 | cvsclm 23144 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | clmsscn 23097 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
9 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
10 | 8, 9 | sseldd 3751 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
11 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
12 | 8, 11 | sseldd 3751 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | cvsdiveqd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
14 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
15 | 10, 12, 13, 14 | divcan6d 11021 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) · (𝐴 / 𝐵)) = 1) |
16 | 15 | oveq1d 6807 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = (1 · 𝑌)) |
17 | 5, 6 | cvsdivcl 23151 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (𝐵 / 𝐴) ∈ 𝐾) |
18 | 3, 9, 11, 14, 17 | syl13anc 1477 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ 𝐾) |
19 | 5, 6 | cvsdivcl 23151 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ 𝐾) |
20 | 3, 11, 9, 13, 19 | syl13anc 1477 | . . . 4 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ 𝐾) |
21 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
22 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
23 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
24 | 22, 5, 23, 6 | clmvsass 23107 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((𝐵 / 𝐴) ∈ 𝐾 ∧ (𝐴 / 𝐵) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
25 | 4, 18, 20, 21, 24 | syl13anc 1477 | . . 3 ⊢ (𝜑 → (((𝐵 / 𝐴) · (𝐴 / 𝐵)) · 𝑌) = ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌))) |
26 | 22, 23 | clmvs1 23111 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉) → (1 · 𝑌) = 𝑌) |
27 | 4, 21, 26 | syl2anc 565 | . . 3 ⊢ (𝜑 → (1 · 𝑌) = 𝑌) |
28 | 16, 25, 27 | 3eqtr3d 2812 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) · ((𝐴 / 𝐵) · 𝑌)) = 𝑌) |
29 | 2, 28 | eqtrd 2804 | 1 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑋) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ⊆ wss 3721 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 0cc0 10137 1c1 10138 · cmul 10142 / cdiv 10885 Basecbs 16063 Scalarcsca 16151 ·𝑠 cvsca 16152 ℂModcclm 23080 ℂVecccvs 23141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-subg 17798 df-cmn 18401 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-dvr 18890 df-drng 18958 df-subrg 18987 df-lmod 19074 df-lvec 19315 df-cnfld 19961 df-clm 23081 df-cvs 23142 |
This theorem is referenced by: ttgcontlem1 25985 |
Copyright terms: Public domain | W3C validator |