Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval5 Structured version   Visualization version   GIF version

Theorem cvrval5 35121
Description: Binary relation expressing 𝑋 covers 𝑋 𝑌. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cvrval5.b 𝐵 = (Base‘𝐾)
cvrval5.l = (le‘𝐾)
cvrval5.j = (join‘𝐾)
cvrval5.m = (meet‘𝐾)
cvrval5.c 𝐶 = ( ⋖ ‘𝐾)
cvrval5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval5
StepHypRef Expression
1 simp1 1128 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 35070 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3 cvrval5.b . . . . 5 𝐵 = (Base‘𝐾)
4 cvrval5.m . . . . 5 = (meet‘𝐾)
53, 4latmcl 17174 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
62, 5syl3an1 1472 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
7 simp2 1129 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 cvrval5.l . . . 4 = (le‘𝐾)
9 cvrval5.j . . . 4 = (join‘𝐾)
10 cvrval5.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
11 cvrval5.a . . . 4 𝐴 = (Atoms‘𝐾)
123, 8, 9, 10, 11cvrval3 35119 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
131, 6, 7, 12syl3anc 1439 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
1423ad2ant1 1125 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
1514ad2antrr 764 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝐾 ∈ Lat)
166ad2antrr 764 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑋 𝑌) ∈ 𝐵)
173, 11atbase 34996 . . . . . . . . . . . 12 (𝑝𝐴𝑝𝐵)
1817ad2antlr 765 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝𝐵)
193, 8, 9latlej2 17183 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → 𝑝 ((𝑋 𝑌) 𝑝))
2015, 16, 18, 19syl3anc 1439 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 ((𝑋 𝑌) 𝑝))
21 simpr 479 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑋 𝑌) 𝑝) = 𝑋)
2220, 21breqtrd 4786 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 𝑋)
2322biantrurd 530 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 𝑌 ↔ (𝑝 𝑋𝑝 𝑌)))
24 simpll2 1233 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑋𝐵)
25 simpll3 1235 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑌𝐵)
263, 8, 4latlem12 17200 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2715, 18, 24, 25, 26syl13anc 1441 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2823, 27bitr2d 269 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 (𝑋 𝑌) ↔ 𝑝 𝑌))
2928notbid 307 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌))
3029ex 449 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌)))
3130pm5.32rd 675 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
3214adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
336adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌) ∈ 𝐵)
3417adantl 473 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
353, 9latjcom 17181 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3632, 33, 34, 35syl3anc 1439 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3736eqeq1d 2726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 ↔ (𝑝 (𝑋 𝑌)) = 𝑋))
3837anbi2d 742 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
3931, 38bitrd 268 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4039rexbidva 3151 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4113, 40bitrd 268 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wrex 3015   class class class wbr 4760  cfv 6001  (class class class)co 6765  Basecbs 15980  lecple 16071  joincjn 17066  meetcmee 17067  Latclat 17167  ccvr 34969  Atomscatm 34970  HLchlt 35057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-preset 17050  df-poset 17068  df-plt 17080  df-lub 17096  df-glb 17097  df-join 17098  df-meet 17099  df-p0 17161  df-lat 17168  df-clat 17230  df-oposet 34883  df-ol 34885  df-oml 34886  df-covers 34973  df-ats 34974  df-atl 35005  df-cvlat 35029  df-hlat 35058
This theorem is referenced by:  lhpmcvr2  35730
  Copyright terms: Public domain W3C validator